
Software Product Design and
Development II

CS 789

John Businge

http://scg.unibe.ch/download/oorp/

Object-Oriented Reengineering.2

Overview of the Class

• https://johnxu21.github.io/teaching/Softw
are-Reengineering/?

Object-Oriented Reengineering.3

https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/

Schedule

1. Introduction
Software changes and that requires planning

2. Reverse Engineering
How to understand your code

3. Visualization
Scalable approach

4. Restructuring
How to Refactor Your Code

5. Dynamic Analysis (& Testing)

To be really certain

5. Code Integration
How to resolve conflicts

7. Mining Software Repositories
Learn from the past

8. Conclusion

Object-Oriented Reengineering.4

Goals

We will try to convince you:

• Programs change!

• Reverse engineering, forward engineering and
reengineering are essential activities in the lifecycle of any
successful software system. (And especially OO ones!)

• There is a large set of lightweight tools and techniques to
help you with reengineering.

• Despite these tools and techniques, people must do job
and they represent the most valuable resource.

Object-Oriented Reengineering.5

Program Change

Social Fork

Branch

Mainline

Pull request

Object-Oriented Reengineering.6

Software Maintenance - Cost

requirement

design

coding

testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance Effort

Between 50% and 75% of
global effort is spent on

“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering?
• Better software methods & tools

(database schemas, CASE-tools, objects,
components, …)?

Object-Oriented Reengineering.7

Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
 even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

Object-Oriented Reengineering.8

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a]
identified several “laws” of system change.

Continuing change

• A program that is used in a real-world
environment must change, or become
progressively less useful in that environment.

Increasing complexity

• As a program evolves, it becomes more complex,
and extra resources are needed to preserve and
simplify its structure.

Those laws are still applicable…

Object-Oriented Reengineering.9

Object-Oriented Reengineering.10

The Reengineering Life-Cycle

(2) problem
detection

Code

Designs

(1) model
capture

(4) program transformation

• people centric
• lightweight

Requirements
(0) requirement

analysis

(3) problem
resolution

New

Feature

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals to
Polymorphism

Object-Oriented Reengineering.11

Organized according to

Reengineering lifecycle

Object-Oriented Reengineering.12

2. Reverse Engineering

• What and Why

• First Contact
+ Interview during Demo

• Initial Understanding

What and Why ?

Definition

Reverse Engineering is the process of analysing a subject system

+ to identify the system’s components and their interrelationships and

+ create representations of the system in another form or at a higher level of

abstraction. — Chikofsky & Cross, ’90

Motivation

Understanding other people’s code

(cfr. newcomers in the team, code reviewing,

original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

Object-Oriented Reengineering.13

Object-Oriented Reengineering.14

The Reengineering Life-Cycle

(0) req. analysis
(1) model capture
issues
• scale
• speed
• accuracy
• politics

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

New

Feature

Object-Oriented Reengineering.15

First Contact

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

feasibility assessment
(one week time)

Verify what
you hear

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read
about it

• Solution: interview during demo
- select several users
- demo puts a user in a positive mindset
- demo steers the interview

Interview during Demo

Solution: Ask the user!

• ... however

+ Which user ?

+ Users complain

+ What should you ask ?

Problem: What are the typical usage
scenarios?

Object-Oriented Reengineering.16

Object-Oriented Reengineering.17

Initial Understanding

understand 
higher-level model

Top down

Speculate about Design

Recover
design

Recover
database

Bottom up

Identify
problems

Study the Exceptional
Entities

ITERATION

Analyze the
Persistent Data

Object-Oriented Reengineering.18

3. Software Visualization

• Introduction
+ The Reengineering life-cycle

• Examples

• Lightweight Approaches
+ tooling

Object-Oriented Reengineering.19

The Reengineering Life-cycle

Requirements

Designs

Code

(0) requirement

analysis

(1) model

capture

(2) problem

detection
(3) problem

resolution

(4) program transformation

(2) problem detection

issues

• Tool support

• Scalability

• Efficiency

New

Feature

UML Diagrams

• (Mostly) Simple and Standard Way to present an
abstract visualization of a system

• UML defines 14 diagrams

• Useful to plan and design the reengineering
project

• You will be using UML diagrams to show the
system before and after the change

Object-Oriented Reengineering.20

Nodes: Classes
Edges: Inheritance Relationships
Width: Number of attributes
Height: Number of methods
Color: Number of lines of code

System Complexity View

Object-Oriented Reengineering.21

Code City

Object-Oriented Reengineering.22

CodeCity is a visualization concept

for source code.

The source code is shown as an

interactive 3D city.

Code City

Object-Oriented Reengineering.23

• Packages are “districts”, “neighborhoods,” or

“city blocks”

• Each “building” represents a class \

• Width = Number of Attributes

• Height = Number of Methods

• Antennas => Classes with many methods and no

attributes

• Parking lot => Classes with many attributes and

no methods

• Skyscraper => Classes with a large number of

methods and has many attributes

State of the Art Tooling

Object-Oriented Reengineering.24

1. source{d}
 https://sourced.tech
 https://github.com/src-d/engine

2. teamscale
 https://www.cqse.eu/
 https://github.com/cqse

3. codescene
 https://codescene.io
 https://github.com/empear-
analytics

Object-Oriented Reengineering.25

4. Restructuring

Identifying refactoring targets

Redistribute Responsibilities

+ Move Behaviour Close to Data

+ Eliminate Navigation Code

+ Split up God Class

+ Empirical Validation

Identifying refactorings in code

❖ Refactoring-aware techniques

Object-Oriented Reengineering.26

The Reengineering Life-cycle

Requirements

Designs

Code

(0) requirement

analysis

(1) model

capture

(2) problem

detection
(3) problem

resolution

(4) program transformation

(3) problem resolution

Issues
• Correctness

• Maintainability

• Risk of regression

• Consistency

• Effort vs payoff

New

Feature

Redistribute Responsibilities

Eliminate Navigation Code

Data containers

Monster client
of data containers

Split Up God Class

Move Behaviour Close to Data

Chains of
data containers

Identifying Refactoring Targets

Object-Oriented Reengineering.27

Object-Oriented Reengineering.28

Split Up God Class

Problem: Break a class which monopolizes control?

Solution: Incrementally eliminate navigation code

• Detection:

+ measuring size

+ class names containing Manager, System, Root, Controller

+ the class that all maintainers are avoiding

• How:

+ move behaviour close to data + eliminate navigation code

+ remove or deprecate façade

• However:

+ If God Class is stable, then don't split
 shield client classes from the god class

Object-Oriented Reengineering.29

Split Up God Class

Many refactoring-aware techniques:

• IntelliMerge & Refmerge – merge branches

• APIDiff – adapt client software to library and
framework updates

• Ogenrwot and Businge (SCAM 2025)

All developed in in the presence of refactoring operations.

Object-Oriented Reengineering.30

Refactoring-Aware Techniques

Refactoring-Aware Techniques

• Accurate refactoring detection is required
for the tools to be efficient

• RefactoringMiner (SOA tool) [Tsantalis et
al. TSE’20]

• The tool takes an input two revisions (e.g.
commits) and returns a list of refactorings

Object-Oriented Reengineering.31

Object-Oriented Reengineering.32

6. Dynamic Analysis (& Testing)

• Key Concept Identification

• Unit testing

• Test coverage

• Mutation testing

Introduction

• Dynamic Analysis verifies properties of a
system during execution

• Testing Analysis is one example of Dynamic
Analysis

+ Unit tests, integration tests, system tests, and
acceptance tests use dynamic testing

Object-Oriented Reengineering.33

Testing

• Tests are your life insurance! (OORP, p. 149)

• Tests are essential to assure the quality of
refactoring activities.

• Write Tests to Enable Evolution (OORP, p.153)

+ Good tests can find bugs on your artifact

+ Tests can also detect unwanted behavior

• You can also write tests to understand a part of a
system (OORP, p.179)

Object-Oriented Reengineering.34

Regression Testing

Object-Oriented Reengineering.35

A type of change-related
testing to detect whether
defects have been introduced
or uncovered in unchanged
areas of the software.

Coverage

Object-Oriented Reengineering.36

Are the areas under
change sufficiently
covered by the
current test suite?

Compare coverage
reports before and
after refactoring!

Object-Oriented Reengineering.37

5. Code integration

• Version Control Systems

• Branching

• Merging/integration

• Merge conflicts

Does not exist in the book
[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

Published work by researchers will be used

Object-Oriented Reengineering.38

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

(4) Code Integration

issues
• Conflicting changes

New

Feature

(0) Clone&nwn

(4) integration

Code Integration

Object-Oriented Reengineering.39

• Compare Code Mechanically (OORP, p.227)

• Begins with mechanical comparison of patches across

repositories

• Detecting Duplicated Code (OORP, p.223)

• Identifying a reusable patch between forks is a duplicate

detection problem

• Most Valuable First (OORP, p.29)

• Not every patch can or should be integrated.

• Write Tests to Understand (OORP, p.179)

• After integration, tests ensure functional behavior holds

in the target.

Object-Oriented Reengineering.41

7. Mining Software Repositories (MSR)

• What are software repositories?

• Why should we mine Software
repositories?

• What are some of the data sources of
software engineering data?

• What are some of the existing tools we
can use to mine software engineering
data

• What can we learn from MSR

Object-Oriented Reengineering.42

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

New

Feature

(4) integration

(4) program transformation

(5) Mining Software
Repositories
issues
• Mining the history
• Who did what

Object-Oriented Reengineering.43

What is a Software Repository?

Artifacts produced and archived during software development

• Technical artifacts

• Social artifacts

Apache Kafka is a distributed event store and stream-processing platform

What is a Software Repository?

1.7

k

Object-Oriented Reengineering.44

Why should we mine Software repositories?

Object-Oriented Reengineering.45

The goal … is to improve software engineering practices

by uncovering interesting and actionable information

about software systems and projects using the vast

amounts of software data

+ Understand software development process

+ Support and/or improve the maintenance of

software systems

+ Exploit knowledge in planning the future

development

- If the data analysis in not carefully

designed and executed, it can lead to

invalid conclusions

What are some of the data sources of software engineering
data?

Object-Oriented Reengineering.46

This list is not exhaustive.

Qn. What are some of the additional software engineering data

sources that can be mained?

What are some of the existing tools we can use to mine
software engineering data?

Object-Oriented Reengineering.47

PyDriller
A Python framework that helps developers in analyzing Git
repositories. With PyDriller you can easily extract information
about commits, developers, modified files, diffs, and source code.

RepoDriller
A Java framework that helps developers on mining software
repositories. With it, you can easily extract information from any Git
repository, such as commits, developers, modifications, diffs, and
source codes, and quickly export CSV files.

Build your own tool/script
Sometimes/ most of the times, you have to build your own tool or script

to mine your own data

Developers who touched files

Object-Oriented Reengineering.48

Object-Oriented Reengineering.49

9. Conclusion

1. Introduction
Software changes and that requires planning

2. Reverse Engineering
How to understand your code

3. Visualization
Scalable approach

4. Restructuring
How to Refactor Your Code

5 . Code Integration
How to resolve conflicts

6. Dynamic Analysis (& Testing)

To be really certain

7. Mining Software Repositories
Learn from the past

8. Conclusion

Object-Oriented Reengineering.50

Goals

We will try to convince you:

• Programs change!

• Reverse engineering forward engineering and
reengineering are essential activities in the lifecycle
of any successful software system. (And especially
OO ones!)

• There is a large set of lightweight tools and
techniques to help you with reengineering.

• Despite these tools and techniques, people must
do job and they represent the most valuable
resource.

	Header Slide
	Slide 1: Software Product Design and Development II CS 789
	Slide 2
	Slide 3: Overview of the Class

	Introduction
	Slide 4: Schedule
	Slide 5: Goals
	Slide 6: Program Change
	Slide 7: Software Maintenance - Cost
	Slide 8: Continuous Development
	Slide 9: Lehman's Laws
	Slide 10: The Reengineering Life-Cycle
	Slide 11: A Map of Reengineering Patterns

	Reverse Engineering
	Slide 12: 2. Reverse Engineering
	Slide 13: What and Why ?
	Slide 14: The Reengineering Life-Cycle
	Slide 15: First Contact
	Slide 16: Interview during Demo
	Slide 17: Initial Understanding

	Software Visualisation
	Slide 18: 3. Software Visualization
	Slide 19: The Reengineering Life-cycle
	Slide 20: UML Diagrams
	Slide 21: System Complexity View
	Slide 22: Code City
	Slide 23: Code City
	Slide 24: State of the Art Tooling

	Restructuring
	Slide 25: 4. Restructuring
	Slide 26: The Reengineering Life-cycle
	Slide 27: Redistribute Responsibilities
	Slide 28: Split Up God Class
	Slide 29: Split Up God Class
	Slide 30: Refactoring-Aware Techniques
	Slide 31: Refactoring-Aware Techniques

	Dynamic Analysis
	Slide 32: 6. Dynamic Analysis (& Testing)
	Slide 33: Introduction
	Slide 34: Testing
	Slide 35: Regression Testing
	Slide 36: Coverage

	Software Integration
	Slide 37: 5. Code integration
	Slide 38: The Reengineering Life-Cycle
	Slide 39: Code Integration
	Slide 41: 7. Mining Software Repositories (MSR)
	Slide 42: The Reengineering Life-Cycle
	Slide 43
	Slide 44
	Slide 45: Why should we mine Software repositories?
	Slide 46: What are some of the data sources of software engineering data?
	Slide 47: What are some of the existing tools we can use to mine software engineering data?
	Slide 48: Developers who touched files

	Conclusion
	Slide 49: 9. Conclusion
	Slide 50: Goals

