Software Product Design and

Development Il
CS 789

. B John Businge

; uh Paltfernsb .
http://scg.unibe.ch/download/oorp/ §

Overview of the Class

e https://johnxu2l.github.io/teaching/Softw
are-Reengineering/?

https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/
https://johnxu21.github.io/teaching/Software-Reengineering/

Schedule

. Introduction

Software changes and that requires planning
. Reverse Engineering

How to understand your code

. Visualization

Scalable approach

. Restructuring

How to Refactor Your Code

. Dynamic Analysis (& Testing)
To be really certain

. Code Integration

How to resolve conflicts

. Mining Software Repositories
Learn from the past

. Conclusion

Goals

We will try to convince you:
e Programs change!

e Reverse engineering, forward engineering and
reengineering are essential activities in the lifecycle of any
successful software system. (And especially OO ones!)

e There is alarge set of lightweight tools and techniques to
help you with reengineering.

e Despite these tools and techniques, people must do job
and they represent the most valuable resource.

Program Change

Branch

oooQ)
|§|‘l‘ 1]

Mainline

\

Pull request

Social Fork

Software Maintenance - Cost

, , Relative Cost
Relative Maintenance Effort

Between 50% and 75% of of Fixing Mistakes w

global effort is spent on
“maintenance” !

x 10

Solution ?
e Better requirements engineering? 5
e Better software methods & tools

(database schemas, CASE-tools, objects, x 1 l

components, ...)?

]
requirement coding delivery
design testing

Object-Oriented Reengineering.7

Continuous Development

data from [Lien78a]

17.4% Corrective
(fixing reported errors)

60.3% Perfective
(new functionality)

18.2% Adaptive
(new platforms or OS)

4.1% Other

The bulk of the maintenance cost is due to new functionality
= even with better requirements, it is hard to predict new functions

Object-Oriented Reengineering.8

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a3]
identified several “laws” of system change.

Continuing change

e A program thatis used in a real-world
environment must change, or become
progressively less useful in that environment.

Increasing complexity

e Asa program evolves, it becomes more complex,
and extra resources are needed to preserve and
simplify its structure.

Program Evolution
Processes of Software Change

Edited by
M. M. Lehman
Departnent of Computin

ience and
gland

L. A. Belady

Software Technology
MCC
Austin. Texas,

1985

@

ACADEMIC PRESS

Harcourt Brace Jovanovich. Publishers
London Orlando San Diego New York
ustin Montreal Sydney Tokyo Toronto

Those laws are still applicable...

The Reengineering Life-Cycle

Requirements “

Designs é\ “

7

C (O

e people centric
e lightweight

Object-Oriented Reengineering.10

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Organized according to
Reengineering lifecycle

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals to
Polymorphism

2. Reverse Engineering

e What and Why

e First Contact
+ Interview during Demo

e |nitial Understanding

What and Why ?

Definition

Reverse Engineering is the process of analysing a subject system

+ to identify the system’s components and their interrelationships and

+ create representations of the system in another form or at a higher level of
abstraction. — Chikofsky & Cross, ‘90

Motivation

Understanding other people’s code

(cfr. newcomers in the team, code reviewing,
original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

The Reengineering Life-Cycle

7
Requirements “ ¢ ﬂ -

C O
Designs é\ “

-
i

(0) req. analysis
(1) model capture
issues

e scale

e speed

e accuracy

e politics

i %}

Object-Oriented Reengineering.14

First Contact f\

———

feasibility assessment

System experts (one week time)
. Talk with Talk with |
developers end users «--"""""~ .
Chat with the Interview \\\ Talk about it
Maintainers during Demo ‘\‘
| \
""""" | F T \‘L

{ _ Software System
! Verify what
\

you hear i Read it Reag/ l Compile it
\ | about it |
Tt ; Read All the Code Skim the Do a Mock

in One Hour Documentation Installation

Interview during Demo

Problem: What are the typical usage
scenarios?

Solution: Ask the user!

e Solution: interview during demo
- select several users
- demo puts a user in a positive mindset
- demo steers the interview

e ... however
+ Which user ?
+ Users complain
+ What should you ask ?

Initial Understanding {\

Top down

Recover
design

Speculate about Design

understand =
higher-level model

Analyze the

Persistent Data _/St.udy the I.E)fceptlo al
Entities

Recover Identify

database problems

—> Bottom up

Object-Oriented Reengineering.17

3. Software Visualization

e |ntroduction
+ The Reengineering life-cycle

e Examples
e Lightweight Approaches

+ tooling

The Reengineering Life-cycle

r
Requirements (“m) -
COI

Designs é\

(2) problem detection
issues

» Tool support
 Scalability

« Efficiency

>

Object-Oriented Reengineering.19

UML Diagrams

(Mostly) Simple and Standard Way to present an
abstract visualization of a system

UML defines 14 diagrams
Useful to plan and design the reengineering
project

You will be using UML diagrams to show the
system before and after the change

System Complexity View

1L dy

Ik

e
-I |l||I|I||I|l|
O -

Nodes:

Edges:

Width:
Height:

Color:

Classes

Inheritance Relationships
Number of attributes
Number of methods
Number of lines of code

%U”DDD

1

Code City

CodeCity 1s a visualization concept
for source code.

The source code 1s shown as an
interactive 3D city.

Object-Oriented Reengineering.22

Code City

29 €6

Packages are “districts”, “neighborhoods,” or
“city blocks”

Each “building” represents a class \

Width = Number of Attributes

Height = Number of Methods

Antennas => Classes with many methods and no
attributes

Parking lot => Classes with many attributes and
no methods

Skyscraper => Classes with a large number of
methods and has many attributes

State of the Art Tooling

1. source{d} =T ,. ..
https://sourced.tech = J ==

https://github.com/src-d/engine

......

2. teamscale
https://www.cqgse.eu/
https://github.com/cqse

1000000

3. codescene
https://codescene.io
https://github.com/empear-
analytics

4. Restructuring

Identifying refactoring targets

Redistribute Responsibilities
+ Move Behaviour Close to Data
+ Eliminate Navigation Code

+ Split up God Class
+ Empirical Validation

Identifying refactorings in code
< Refactoring-aware techniques

The Reengineering Life-cycle

Requirements

Designs é\

A

(3) problem resolution

Issues

» Correctness

* Maintainability

» Risk of regression
Consistency

» Effort vs payoff

Object-Oriented Reengineering.26

>

Identifying Refactoring Targets

/\s

Redistribute Responsibilities

Monster client

Chains of of data containers

data containers

Split Up God Class

Eliminate Navigation Code

Data containers

v

Move Behaviour Close to Data

Split Up God Class

Problem: Break a class which monopolizes control?
Solution: Incrementally eliminate navigation code
e Detection:
+ measuring size
+ class names containing Manager, System, Root, Controller
+ theclass that all maintainers are avoiding
e How:
+ move behaviour close to data + eliminate navigation code
+ remove or deprecate facade
e However:

+ If God Class is stable, then don't split
= shield client classes from the god class

Split Up God Class

EmployeeManager
+hireEmployee(Employee employee)
+terminateEmployee(int employeeld)
+editEmployee(Employee employee)
+addVacationTime(int employeeld, int days)
+useVacationTime(int employeeld, int days)
+addAddress(int employeeld, Address address)
+removeAddress(int employeeld, int idAddress)
+giveBonus(int employeeld, int bonus)
+assignEquipment(int employeeld, Equipment equip)
+giveRaise(int employeeld, int amount)
+dockPay(int employeeld, int amount)
+addSchedule(int employeeld, Schedule schedule)
+addPhoneNumber(int employeeld, string phone)

EmployeeManager PaymentManager
+hireEmployee(Employee employee) +giveBonus(int employeeld, int amount)
+terminateEmployee(int employeeld) +giveRaise(int employeeld, int amount)
+editEmployee(Employee employee) +dockPay(int employeeld, int amount)

EmployeeContactManager

ScheduleManager

+addEmployeeSchedule(int employeeld, Schedule sch) jai - ntcmployeeld Address address)

+removeAddress(int employeeld, int addressld)
+addPhoneNumber(int employeeld, string phone)

VacationManager

+addVacationTime(int employeeld, int days) EquipmentManager

+useVacationTime(int employeeld, int days) +assignEquipment(int employeeld, Equipment eq)

Refactoring-Aware Techniques

Many refactoring-aware techniques:
e [ntelliMerge & Refmerge — merge branches

e APIDiff — adapt client software to library and
framework updates

e Ogenrwot and Businge (SCAM 2025)

All developed in in the presence of refactoring operations.

Refactoring-Aware Techniques

e Accurate refactoring detection is required
for the tools to be efficient

e RefactoringMiner (SOA tool) [Tsantalis et
al. TSE’20]

e The tool takes an input two revisions (e.g.
commits) and returns a list of refactorings

6. Dynamic Analysis (& Testing)

Key Concept Identification
Unit testing

Test coverage

Mutation testing

Introduction

e Dynamic Analysis verifies properties of a
system during execution

e Testing Analysis is one example of Dynamic
Analysis

+ Unit tests, integration tests, system tests, and
acceptance tests use dynamic testing

Testing

Tests are your life insurance! (OORP, p. 149)

Tests are essential to assure the quality of
refactoring activities.
Write Tests to Enable Evolution (OORP, p.153)

+ Good tests can find bugs on your artifact
+ Tests can also detect unwanted behavior

You can also write tests to understand a part of a
system (OORP, p.179)

[) & glossary.istgb.org & ® h + ©

Atype
unco

Regression Testing

1 Results Found

of change-related testing to detect whether defects have been introduced or

vered in unchanged areas of the software.

A type of change-related
testing to detect whether
defects have been introduced
or uncovered in unchanged
areas of the software.

Object-Oriented Reengineering.35

Coverage

LCOV - code coverage report

Current view: top level Hit Total
Test: libbash test coverage Lines: 20640 34749 A re t h e a r e a S u n d e r
Date: 2011-05-26 Functions: 1184 1287
Branches: 15689 37086
. .
e Orectorye | lingCoverage | Functions® | change suII|CIent|y
E e | 95.7 % 314/328 98.2 % 55/56
t | 97.0% 98/101 100.0 % 72172
1] 98.6 % 144/146 100.0% 203/203
EEE—— 98.6 % 214/217 100.0 % 45/45 Cove re t e
[| 98.9 % 351/355 993% 133/134
E— 1000% 9/9 933% 14/15
[100.0 % 35/35 91.7 % 11/12 o
o 100.0% 190/190 98.0% 99/101 Curre nt test Su Ite?
L]

Generated by: LCOV version 1.9

e
(#)- £ org.apache.commons. collections. Test Trar memJDGdﬂfmlm[lﬂ Coverage &3 =0
s e “xx . _-ex | Compare coverage
&L TestBeanMap
-&S org.apache.commons, collections, TestBin, Element [Coverage |_Covered Lines | Total Lines | &
- L TestBoundedFifoBuffer =% java - commons-collections = 79,5 % 10927 13738
-] TestBoundedFifoBuffer2 = # org.apache.commons. collections = 74,1% 3842 5183
[#-16] TestCursorableLinkedList & [J] ArayStack.java = 86,5 % 32 37 re p O rtS e O re a n
[TestDoubleOrderediap G- [J] BagUtis.java = 8,7% 13 15 S8
-k org.apache.commons, collections, TestExte G- (J] BeanMap.java = 724% 155 214
- TestFastarrayList G1-1J] BinaryHeap.java = 87,6 % 127 145 ° I
- EL) TestFastarrayList] - [J] BoundedFifoBuffer.java = 93,2% [88 a te r re a Cto rl n
-l TestFastHashMap 2} i BufferOverflowException.java = 55,6 % S 9 .
i [TestFastHashMap1 E2] iJ\ BufferUnderflowException.java = 88,2 % 8 9
w L] TestFastTreeMap & i\] Bufferlitils. java - 30,8% 4 13
@)L TestFastTreeMapl = - [J] Closureltils.java = 93,9 % 31 x]
4 | _l_l [#] é‘ CollectionUtils. java = 92,4 % 293 317
. & [J] Comparatorltils.java - 8,6 % 3 35
= Faiure Trace i [J) CursorableLinkedList java = 4% 444 520 %
E | Writable Smart Insert | 1491 28

Object-Oriented Reengineering.36

5. Code integration

e Version Control Systems
e Branching

e Merging/integration

e Merge conflicts

Does not exist in the book
[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

Published work by researchers will be used

The Reengineering Life-Cycle

(4
(‘\ Pd
C . JJ

Requirements

Designs é\ |

(4) Code Integration

issues
e Conflicting changes

Object-Oriented Reengineering.38

Code Integration

Compare Code Mechanically (OORP, p.227)
* Begins with mechanical comparison of patches across
repositories
Detecting Duplicated Code (OORP, p.223)
 Identifying a reusable patch between forks 1s a duplicate
detection problem
Most Valuable First (OORP, p.29)
* Not every patch can or should be integrated.
Write Tests to Understand (OORP, p.179)
» After integration, tests ensure functional behavior holds
in the target.

7. Mining Software Repositories (MSR)

e What are software repositories?

e Why should we mine Software
repositories?

e \What are some of the data sources of
software engineering data?

e What are some of the existing tools we
can use to mine software engineering
data

e What can we learn from MSR

The Reengineering Life-Cycle

Requirements

4

Designs é\

(5) Mining Software
Repositories

issues

e Mining the history
e Who did what

(4
(‘\ Pd
C . JJ

Object-Oriented Reengineering.42

What 1s a Software Repository?

Artifacts produced and archived during software development
* Technical artifacts
* Social artifacts

What is a Software Repository?

H|apache [kafka ' Public ®Watch 1k ~ | % Fork M3k ¥o star 215k -

I‘l Pull requests 953 Open ' 11,016 Closed

Q ijjuma KAFI(A—‘IB&‘IBtuppUrT key updates with TLS 1.3 (#11966) X S5aed178] 12 hours ago ¥Y) 9,874 commits

lding kafka-storagg.bat file (similar to kafka-storage.sh) fo... 16 days ago
DDD —
S: k class comparisof in "AlterConfigPolicy.Req B -
§g kafka
s 2]
Contributors 884
M config MINOR s o o] DOWNLOAD nth
OO0 99|
B connect KAFKA pL jo
' . ¥ i + Released January 24, 2022
B core MINOR 1 7 hY 3.0.0 1go
. docs KAFKA + 873 contributors](3 - Released September 21, 2021 1o
2.8.0
B examples s in examples R 5 ago
Languages « Released April 19, 2021
B generator/src aassssssssssssssees sy p99€ed string fiell' 5 7 ¢ - |3 ago
® Java 74.2% @ Scala 22.7%
. gradle {#1‘]885} + Released Dec 21, 2020 ;ago
® Python 2.7% Shell 0.2% 2.6.0
.6.
M jmh-benchmarks Roff 0.1% Batchfile 0.1% (#11870) s ago
+ Released Aug 3, 2020
B licenses MINOR: Add missing licenses and update versions in LICENSE-DINary... 7 MOonMms ago

Apache Kafka is a distributed event store and stream-processing platform

Why should we mine Software repositories?

The goal ... is to improve software engineering practices
by uncovering interesting and actionable information
about software systems and projects using the vast

amounts of software data

+ Understand software development process
+ Support and/or improve the maintenance of
software systems

+ Exploit knowledge in planning the future
development

- If the data analysis in not carefully

designed and executed, it can lead to
invalid conclusions

What are some of the data sources of software engineering

data?
2 & \E!
: Manager Tester
\ . — SW Architect
Programmer Programmer

Computer Mediated
Tools

Client

Souroe Bug Message
Code Reports Archives

Current and historical artifacts and interactions are registered in software repositories

This list is not exhaustive.
Qn. What are some of the additional software engineering data
sources that can be mained?

Object-Oriented Reengineering.46

What are some of the existing tools we can use to mine
software engineering data?

PyDriller

A Python framework that helps developers in analyzing Git
repositories. With PyDriller you can easily extract information
about commits, developers, modified files, diffs, and source code.

RepoDriller

A Java framework that helps developers on mining software
repositories. With it, you can easily extract information from any Git
repository, such as commits, developers, modifications, diffs, and

source codes, and quickly export CSV files.

Build your own tool/script
Sometimes/ most of the times, you have to build your own tool or script

to mine your own data

Developers who touched files

500 A
400 -
v
% 300 A
[
=
200 - e o
R
~ .
100 -
0 -
0 50 100 150 200 250 300 350

file

Object-Oriented Reengineering.48

9. Conclusion

=

. Introduction
Software changes and that requires planning
2. Reverse Engineering
How to understand your code
3. Visualization
Scalable approach
4. Restructuring
How to Refactor Your Code
5. Code Integration
How to resolve conflicts
6. Dynamic Analysis (& Testing)
To be really certain
7. Mining Software Repositories
Learn from the past
8. Conclusion

Goals

We will try to convince you:
e Programs change!

e Reverse engineering forward engineering and
reengineering are essential activities in the lifecycle
of any successful software system. (And especially
OO ones!)

e There is a large set of lightweight tools and
techniques to help you with reengineering.

e Despite these tools and techniques, people must
do job and they represent the most valuable
resource.

	Header Slide
	Slide 1: Software Product Design and Development II CS 789
	Slide 2
	Slide 3: Overview of the Class

	Introduction
	Slide 4: Schedule
	Slide 5: Goals
	Slide 6: Program Change
	Slide 7: Software Maintenance - Cost
	Slide 8: Continuous Development
	Slide 9: Lehman's Laws
	Slide 10: The Reengineering Life-Cycle
	Slide 11: A Map of Reengineering Patterns

	Reverse Engineering
	Slide 12: 2. Reverse Engineering
	Slide 13: What and Why ?
	Slide 14: The Reengineering Life-Cycle
	Slide 15: First Contact
	Slide 16: Interview during Demo
	Slide 17: Initial Understanding

	Software Visualisation
	Slide 18: 3. Software Visualization
	Slide 19: The Reengineering Life-cycle
	Slide 20: UML Diagrams
	Slide 21: System Complexity View
	Slide 22: Code City
	Slide 23: Code City
	Slide 24: State of the Art Tooling

	Restructuring
	Slide 25: 4. Restructuring
	Slide 26: The Reengineering Life-cycle
	Slide 27: Redistribute Responsibilities
	Slide 28: Split Up God Class
	Slide 29: Split Up God Class
	Slide 30: Refactoring-Aware Techniques
	Slide 31: Refactoring-Aware Techniques

	Dynamic Analysis
	Slide 32: 6. Dynamic Analysis (& Testing)
	Slide 33: Introduction
	Slide 34: Testing
	Slide 35: Regression Testing
	Slide 36: Coverage

	Software Integration
	Slide 37: 5. Code integration
	Slide 38: The Reengineering Life-Cycle
	Slide 39: Code Integration
	Slide 41: 7. Mining Software Repositories (MSR)
	Slide 42: The Reengineering Life-Cycle
	Slide 43
	Slide 44
	Slide 45: Why should we mine Software repositories?
	Slide 46: What are some of the data sources of software engineering data?
	Slide 47: What are some of the existing tools we can use to mine software engineering data?
	Slide 48: Developers who touched files

	Conclusion
	Slide 49: 9. Conclusion
	Slide 50: Goals

