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1 INTRODUCTION

In recent years, the integration of Al tools such as ChatGPT into
software development has grown significantly, reflecting broader
trends in Al-assisted workflows [8]. These tools have great potential
to improve decision making related to software patches in pull
requests (PR), which are vital components of collaborative software
development. Specifically, developers are using features such as link
sharing in ChatGPT to enhance collaborative practices, streamline
code reviews, and make more informed patch integration decisions.

At the same time, research on fork-based software families has
highlighted persistent challenges associated with collaboration,
reuse, and code integration across different variants [1, 2, 7]. Man-
aging contributions in distributed software ecosystems, where co-
ordination and reuse are critical to maintaining divergent forks,
presents considerable complexity. Recognizing these challenges
sets the stage for our investigation into how conversational Al
tools like ChatGPT can enhance these collaborative efforts.

To address this gap, our study evaluates ChatGPT’s role in
improving the efficiency and effectiveness of patch decisions in
merged PRs. By analyzing real-world uses of ChatGPT, including
how conversations are shared and referenced in collaborative cod-
ing scenarios, we aim to provide a comprehensive picture of Al’s
impact on software development practices. Ultimately, we demon-
strate how the integration of ChatGPT into the PR process can
improve productivity and decision-making in software teams.

2 STUDY DESIGN

This section presents the research method from data collection,
tool design, and quantitative and qualitative analysis. We set the
following research questions:

e RQ1: What is the distribution of merged pull requests with
patches applied (PA), not applied (PN), or not suggested (NE) by
ChatGPT?
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e RQ2: Why are patches suggested by ChatGPT in conversations
not integrated (PN) into the pull request?

2.1 Data Collection

Step 1: Identification of merged pull requests containing ChatGPT
conversation shared links: We used DevGPT dataset [9] mined be-
tween July 27, 2023, and October 12, 2023. Our study focuses only
on the merged pull requests. To ensure a comprehensive and up-
to-date analysis, we extended the dataset to accommodate data
from October 13, 2023, to February 18, 2024. After filtering out ‘toy’
projects and inactive links, we remained with 183 PRs from 151
unique repositories.

Step 2: Extracting pull requests and ChatGPT patches. Due to Ope-
nAT’s updated terms of service, manual extraction of patches from
ChatGPT conversations was necessary. Shared links from Step 1
were converted into HTML files, allowing for local scraping without
HTTP requests. This process yielded two sets of patches for each
pull request: one from ChatGPT and one from the PR, which will
be used in the next patch classification step.

Step 3: Patch classification. PatchTrack, adapted from PaReco [6],
is used for patch classification by comparing code snippets from
ChatGPT-developer conversations with PR patches. Unlike PaReco,
which handles mainline-variant relationships, PatchTrack focuses
solely on identifying integrated code snippets. It normalizes code
for 34 supported file types and employs n-gram tokenization (n=1)
to detect subtle code variations, ensuring high precision. Patches
are classified at the hunk level into categories: PA, PN, NE, CC, or EE,
depending on the match with ChatGPT-suggested code.

Step 4 & 5: Pull request classification: PRs are classified based on the
results from Step 3. If a PR contains any PA patches, it is classified
as PA. If no PA patches are found but PN patches exist, the PR is
classified as PN. If neither PA nor PN patches are present, the PR
is classified as NE. The Jaccard containment metric was used to
calculate the percentage of ChatGPT’s code integrated into PRs by
comparing the token streams from ChatGPT and GitHub patches.
Step 6: Qualitative analysis: To address RQ2, we employed a rig-
orous qualitative analysis methodology. This involved summariz-
ing ChatGPT-developer conversations and GitHub PRs using the
Framework Method [5], followed by thematic extraction using card
sorting technique. This process was carried out collaboratively by
2 Ph.D. students and 1 Professor from the same lab.

3 RESULTS & DISCUSSION - RQ1

What is the distribution of merged pull requests with patches applied,
patches not applied, and no patches suggested by ChatGPT?

In RQ1, we focus on quantifying the distribution of PRs classified
as PA, PN and NE from 183 cases in our dataset using PatchTrack.
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Figure 1 illustrates the distribution of PRs categorized as either PA,
PN, NE, CC, or EE. Notably, 70/183 of the PRs are classified under
the NE category, indicating that a significant portion of the conver-
sations between developers and ChatGPT does not involve code
snippet suggestions. The classifications for PA and PN are 58/183
and 55/183, respectively. Notably, no patches were classified as CC
or EE.
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Figure 1: Distribution of patch classification results.

To evaluate the performance of PatchTrack, we employed the
metrics of accuracy, precision, recall, and Fl-score. The perfor-
mance of the tool is notable for identifying the NE class, without
errors, and demonstrates reasonable precision in classifying the PN
(93.4%) and PA (93.4%) classes. The PA class shows a lower precision
(73.3%), likely due to its sensitivity to single-line code snippets.
This sensitivity, stemming from the use of n-gram tokenization
with n = 1, may cause false positives. Despite these challenges,
the tool performs well and is comparable to related tools, PaReco
and ReDebug. Recall that in Section 2—Step 5, we used Jaccard’s
containment ratio to calculate the percentage of patches applied
into the pull requests. The findings indicate that typically, a quarter
(25%) of the suggested code from ChatGPT is incorporated into the
combined PRs.

Implication

The findings from RQ1 reveal that developers generally trust Al-
generated patches, with 58 PA cases showing ChatGPT’s effective-
ness in straightforward tasks. Typically, 25% of ChatGPT code is
integrated into pull requests, with some developers fully adopting
Al suggestions. The 55 PN cases suggest a need to explore why
Al suggestions are not always integrated, while the 70 NE cases
highlight AT’s broader roles in development. The tool effectively
identifies NE and PN cases but needs refinement in PA precision.

4 RESULTS & DISCUSSION - RQ2

Recall that to address RQ2, in Section 3.2-Step 6 we employed a
rigorous qualitative analysis methodology that involves summariz-
ing ChatGPT developer conversations and GitHub PRs, followed
by thematic extraction using a card sorting technique.

RQ2: Why are the patches suggested by ChatGPT in conversations not
integrated (PN) into the pull request?

In our analysis, we reviewed 53 out of the 55 PN instances clas-
sified by PatchTrack, excluding 2 instances identified as false
positives. We identified six reasons why patches suggested by
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ChatGPT were not integrated: adaptation to project needs (33.9%),
methodological guidance (18.7%), specific functionality enhance-
ments (15.1%), technical limitations (13.2%), clarification & cor-
rection (11.3%), and documentation improvements (7.5%). These
findings show that developers often modify ChatGPT’s suggestions
to better suit their projects, seeking insights, or enhancing internal
processes.

Implication

The findings indicate that developers often customize ChatGPT’s
suggestions to better fit their specific project needs, seek method-
ological insights, or improve documentation and internal processes.
For practitioners, this emphasizes the value of Al tools as supple-
mentary tools that provide conceptual guidance, not standalone
solutions. Developers could use AI to refine their practices and
align with project-specific requirements, highlighting the need for
Al systems that understand project contexts and support broader
development activities beyond just code generation.

5 CONCLUSION

This study explored ChatGPT’s role in improving patch decision-
making within pull requests (PRs). By integrating AI tools like
ChatGPT into development workflows, developers can streamline
coding practices, documentation, and problem-solving. Addition-
ally, the findings have implications for managing variant software
families, where collaboration and code reuse are critical [3, 4]. Fu-
ture research should focus on optimizing Al for context-specific
tasks, such as handling divergent forks, and investigating cases
where ChatGPT does not suggest patches (NE).
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