
Dynamic Analysis: Testing
John Businge

john.businge@unlv.edu

Introduction

• Dynamic Analysis verifies properties of a system during
execution/runtime.
• Testing Analysis is one example of Dynamic Analysis
• Unit tests, integration tests, system tests, and acceptance tests use dynamic

testing

Testing in the Book

• Tests are your life insurance! (OORP, p. 149)
• Tests are essential to assuring the quality of refactoring/code change

activities.
• Write Tests to Enable Evolution (OORP, p.153)
• Good tests can find bugs in your artifact
• Tests can also detect unwanted behavior

• You can also write tests to understand a part of a system (OORP,
p.179)
• Test the Interface, Not the implementation (OORP, p.171). This is

essentially Black-box testing.

Unit Testing

• In this session, we focus on Unit Testing.
• Unit testing focuses on the smallest testable parts of an

application called units (e.g., a class method or function)
• There are other types of testing (Integration, Performance,

Security, etc.)
• It does not mean that Unit Testing is more important, but

those are the tests we can more easily automatize and
benefit from tool support.

Quality of a Test Suite

• How do you know if your unit test cases are good enough?
• Are they really testing the application?
• When do we stop testing?

Solution: Test Coverage!

Test Coverage

Coverage = !"#$%& '()'*%&%+ ,-%#.
/'-01 2"#$%& '(3-%#.

X 100%

• Examples:
• Statement (Line, or Code) Coverage.
• Branch (Condition) Coverage
• Path Caverage
• Mutation Caverage

Example: a function to test

Statement/Line/Code Coverage
Test Case(s)

ASSERT foo(0, true, true, true) == 0;

Statement/Line/Code Coverage
Test Case(s)

ASSERT foo(0, true, true, true) == 0;

Statement/Line/Code Coverage
Test Case(s)

ASSERT foo(0, true,, true, true) == -1;false

x++;

𝟖
𝟗 x100% = 88.9%

Branch/Condition Coverage
Test Case(s)

ASSERT foo(0, true, true, true) == 0;

Branch/Condition Coverage
Test Case(s)

ASSERT foo(0, true, true, true) == 0;
Assert foo(0,false, false, false) == 0;

New Test

Path Coverage

Paths for three “if” each can be either true (T) or false (F)

8-Paths

Path Coverage
Test Case(s)

ASSERT foo(0, true, true, true) == 0;
ASSERT foo(0,false, false, false) == 0;

25% Path Coverage

Mutation Testing

Mutation Coverage = !"#$%& '(4311%+ 5"-02-.
/'-01 2"#$%& '(5"-02-.

X 100%

The more killed
mutants the better

Mutation Testing: Small Example

Mutant Survives
the Test Case

Mutation Testing: Small Example

Mutation Coverage

• Assess how good your test cases are at catching faults by introducing
defects into the source code.

• More reliable metric to validate test suite effectiveness.

• In recent years, mutation testing has been more prominent in
academia and less in industry.

Testing Coverage for the Project

• It is required to show coverage for your Project (in both the
Intermediate and the Final Report)
• At least Statement Coverage, but Branch Coverage is better.
• You should show the chosen coverage before the refactoring/change and

after (where hopefully you also added new tests).

• There is no set coverage limit to reach for the project.
• But if your project has very low coverage, you better have a good

explanation for that.
• Focus on increasing the coverage for the system parts that will be

affected by your refactoring/change.

