
Refactoring Assistants
John Businge

john.businge@unlv.edu

Refactoring: change the internal structure of
a code without compromising its external

behaviour

Refactorings can be looked at in two ways:
1. How to identify refactoring targets
2. How to detect applied refactorings

How to identify refactoring targets

“I wrote the original edition in 2000 when Refactoring was a little-
known technique.” – Martin Fowler

• Refactoring is a very common practice that helps developers to
complete maintenance tasks (i.e., implement new features and fix
bugs) and eliminate various design and code smells
• There are more than 80 types of refactorings
• Some of the common refactorings:
• Moving a class, renaming an attribute, extracting a method

Strategic Refactoring

• Strategic Refactoring is to apply refactoring for a particular design
reason/goal
• Support a new feature/correction
• Solving a specific design problem
• “Refactor to Understand” (OORP, p.127)
• In this Reengineering Course, refactoring without reason/goal is

meaningless.
• Please remember the pattern “Keep it Simple” (OORP, p.37) when

planning refactoring activities.

Bad/Code Smells

• Code smells are the result of inexperience
multiplied by tight deadlines,
mismanagement, and nasty shortcuts taken
during the development process.

• Code smells are a prime candidate for
refactoring

• SonarQube is a nice tool for Smell detection

• In CodeScene, Only the paid version shows
Smells

Disharmonies and their correlations

Code Smell Example: God Class

• A God Class is a class that is big on size and/or responsibilities,
controlling too many objects.

• Refactoring solution: Extract/Split Class
• It is often possible to “split” a god class into two or more classes

with a more clear and logical design

Code Smell Example: God Class

Code Smell Example: God Class

Guidelines on How to Refactor

(1) Identify where (and when) to refactor
(2) Consider which refactoring(s) to apply
(3) Assure behavior preservation on the refactored artifact
(4) Perform the refactoring(s)
(5) Assess the effect of the refactoring on quality
(6) Maintain the system’s consistency among the refactored code and

other software artifacts

How to detect Applied Refactorings

Refactoring is noise in evolution analysis
• Bug-inducing analysis (SZZ): flag refactoring edits as bug-

introducing changes
• Tracing requirements to code: miss traceability links due

to refactoring
• Regression testing: unnecessary execution of tests for

refactored code with no behavioral changes
• Code review/merging: refactoring edits tangled with the

actual changes intended by developers

There are many refactoring detection tools

• Demeyer et al. [OOPSLA’00]
• UMLDiff + JDevAn [Xing & Stroulia ASE’05]
• RefactoringCrawler [Dig et al. ECOOP’06]
• Weißgerber and Diehl [ASE’06]
• Ref-Finder [Kim et al. ICSM’10, FSE’10]
• RefDiff [Silva & Valente, MSR’17]
• RefactoringMiner (SOA tool) [Tsantalis et al. TSE’20]
(RefactoringMiner has the highest average precision (99.6%)
and recall (94%) among all competitive tools)

RefactoringMiner approach in a nutshell

AST-based statement matching algorithm
• Input: code fragments T1 from parent commit and T2 from child commit
• Output:
• M set of matched statement pairs
• UT1 set of unmatched statements from T1
• UT2 set of unmatched statements from T2

• Code changes due to refactoring mechanics: abstraction, argumentization
• Code changes due to overlapping refactorings or bug fixes:

syntax-aware AST node replacements

13

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

AfterBefore

Extract Method detection rule

14

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(int count) {
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

AfterBefore

Extract Method detection rule

15

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

AfterBefore

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", ports.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

Extract Method detection rule

16

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

AfterBefore

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", ports.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

Extract Method detection rule

17

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

}
return addresses;

}

try {
addresses[i] =
new Address("127.0.0.1", ports.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}

AfterBefore

Extract Method detection rule

18

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address(host, port);

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

Extract Method detection rule

19

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address(host, port);

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

(1) Abstraction

Extract Method detection rule

20

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address(host, port);

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

(2) Argumentization

Extract Method detection rule

21

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address("127.0.0.1", ports.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

(2) Argumentization

Extract Method detection rule

22

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address("127.0.0.1", ports.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

(3) AST Node Replacements

Extract Method detection rule

23

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

Extract Method detection rule

24

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

textual similarity = 100%

Extract Method detection rule

25

private static Address[] createAddresses(int count) {
Address[] addresses = new Address[count];
for (int i = 0; i < count; i++) {
try {
addresses[i] =
new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
}
return addresses;

}

private static List<Address> createAddresses(AtomicInteger ports, int count){
List<Address> addresses = new ArrayList<Address>(count);
for (int i = 0; i < count; i++) {

addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

}
return addresses;

}

protected static Address createAddress(String host, int port) {
try {
return new Address("127.0.0.1", PORTS.incrementAndGet());

}
catch (UnknownHostException e) {
e.printStackTrace();

}
return null;

}

AfterBefore

A
B
C
D

E
F

G

1
2

3

9

4
5

6
7

8

M = {(C, 4) (D, 5) (E, 6) (F, 7)}
UT1 = {A, B, G}
UT2 = {8}

Extract Method detection rule

Extract Method detection rule

(M, UT1, UT2) = statement-matching(createAddresses, createAddress)
M = {(C, 4) (D, 5) (E, 6) (F, 7)} UT1 ={A, B, G} UT2 = {8}

createAddress is a newly added method in child commit ü
createAddresses in parent commit does not call createAddress ü

createAddresses in child commit calls createAddressü
|M| > |UT2| ü
Þ createAddress has been extracted from createAddresses

The Project

• Intermediate Report
• What refactorings are you planning to implement in the project
• Reasons why the refactorings are important for your goal
• Describe the planned refactoring activities

• Final Report
• Same as the intermediate Report, but the refactorings must be “completed”

by then
• Commits relating to the refactorings should be clearly labelled.

