Software Product Design and
Development |l

CS 473
JOhn BUSinge Software
Evolution

August 2022

http://scg.unibe.ch/download/oorp/

Reeﬁgmee}lrfg"i

L)

Patterns

Schedule

|. Introduction
Software changes and that requires planning
2. Reverse Engineering
How to understand your code
3. Visualization
Scalable approach
4. Restructuring
How to Refactor Your Code
5. Code Integration
How to resolve conflicts
6. Dynamic Analysis (& Testing)
To be really certain
7. Mining Software Repositories
Learn from the past
8. Conclusion

Goals

We will try to convince you:
* Programs change!

* Reverse engineering, forward engineering and
reengineering are essential activities in the lifecycle of any
successful software system. (And especially OO ones!)

* There is a large set of lightweight tools and techniques to
help you with reengineering.

* Despite these tools and techniques, people must do job and
they represent the most valuable resource.

Program Change

Branch

ooo]
|‘|<|< 1l

Mainline

Social Fork

Pull request

Software Maintenance - Cost

Relative Maintenance Effort
Between 50% and 75% of
global effort is spent on
“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
* Better requirements engineering?
* Better software methods & tools

(database schemas, CASE-tools, objects,

components, ...)?

XSII

requirement coding delivery
design testing

Object-Oriented Reengineering.6

Continuous Development

eeeee data from [Lien78a]

17.4% Corrective
(fixing reported errors)

60.3% Perfective
(new functionality)

18.2% Adaptive
(new platforms or OS)

4.1% Other

The bulk of the maintenance cost is due to new functionality
—> even with better requirements, it is hard to predict new functions

Object-Oriented Reengineering.7

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a]
identified several “laws” of system change.

A\
Continuing change O&‘N .
* A program that is used in a real-world

environment must change, or become
progressively less useful in that environment.

)
Increasing complexity {(’(@(\(OQ

* As a program evolves, it becomes more complex,
and extra resources are needed to preserve and
simplify its structure.

Program Evolution
Processes of Software Change

Edited by

M. M. Lehman

a Computing
wperial College of Science and Technology
London, England

L. A. Belady

1985

ACADEMIC PRESS
Harcourt Brace Jovanovich, Publishers
London Orlando San Diego New York
Austin - Montreal Sydney Tokyo Toronto

Those laws are still applicable...

Cumulative # Deps

Lehman's Laws

400 - Added
-@-Deleted

200

100

Feb-06 0c-06 Jun-07 Feb-08 Oct-08 Jun-09 Feb-10

Figure 1: Cumulative Added and Deleted Deps to Eclim

300

~
wn
o

a

a

£ 200 —

z

=

2 0 -#-Added

5 -=-Deleted
- - Modified
2 100

35

€

3

o

wn
o

Feb-06 Oct-06 Jun07 Feb-08 Oct-08 Jun-09 Feb-10

Figure 2: Cumulative changes of classes with Deps in Eclim

Businge et al. An empirical study of the evolution of Eclipse third-party plug-ins, IWPSE - 2010

Object-Oriented Reengineering.9

The Reengineering Life-Cycle

Requirements “

r

rd

Lo

i

* people centric
* lightweight

Wi %

Object-Oriented Reengineering.10

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture Migration Strategies

Initial Understanding Detecting Duplicated Code

Redistribute

First Contact Responsibilities

Transform
Conditionals to
Polymorphism

Setting Direction

2. Reverse Engineering

* What and Why

* First Contact
+ Interview during Demo

* Initial Understanding

What and Why ?

Definition
Reverse Engineering is the process of analysing a subject system

+ to identify the system’s components and their interrelationships and

+ create representations of the system in another form or at a higher level of

abstraction. — Chikofsky & Cross, 90

Motivation
Understanding other people’s code

(cfr. newcomers in the team, code reviewing,
original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

The Reengineering Life-Cycle

(4

COD
(0) req. analysis

(1) model capture
issues

* scale

* speed

* accuracy

/
:ffi\ * politics
Code
>

Object-Oriented Reengineering. |14

)

£\

First Contact

F_““__“““__“““__“““__“““__“““__““““““"“““““““i feasibility assessment
System experts | (one week time)
Talk with Talk with
developers end users | __---=-- <
Chat with the Interview | v Talk about it
Maintainers during Demo \‘
__________ S —
! \
I i' "" L"""""""":
A , | Software System i
1 Verify what ; i
'\ you hear Read it / Reaql \ Compile it i
‘ | about it
i . Read All the Code Skim the Do a Mock
Documentation Installation

~~~~~ >
in One Hour



First Project Plan

Use standard templates, including:
* project scope
+ see "Setting Direction"

* opportunities
+ e.g., skilled maintainers, readable source code, documentation

* Risks
+ E.g., absent test suites, missing libraries, ...

+ record likelihood (unlikely, possible, likely)
& impact (high, moderate, low) for causing problems

* go/no-go decision
* activities
+ fish-eye view



Interview during Demo

Problem:What are the typical usage

scenarios!?

Solution: Ask the user!

... however

+ Which user?

+ Users complain

* Solution: interview during demo
- select several users
- demo puts a user in a positive mindset
- demo steers the interview

+ What should you ask ?




Initial Understanding 7(-\

Top down
Recover
design

Speculate about Design

..................
‘‘‘‘‘‘
PY

understand =

higher-level model IR LT T T NPT L y
nayze ¢ Exceptional

Persistent Data Entities

Recover Identify
database problems

—> ~ Bottom up




3. Software Visualization

* Introduction
+ The Reengineering life-cycle

* Examples
* Lightweight Approaches

+ tooling




The Reengineering Life-cycle

4
C (O

A

Designs ﬁ\

(2) problem detection
issues

* Tool support

« Scalability

- Efficiency

>

Object-Oriented Reengineering.20



UML Diagrams

(Mostly) Simple and Standard Way to present an
abstract visualization of a system

UML defines 14 diagrams

Useful to plan and design the reengineering
project

You will be using UML diagrams to show the
system before and after the change



System Complexity View

| MM ﬁﬁﬂ 1| | {eone
TR

1

Nodes: Classes

Edges: Inheritance Relationships
Width: Number of attributes
Height: Number of methods
Color: Number of lines of code




Code City

CodeCity 1s a visualization concept
for source code.

The source code 1s shown as an
interactive 3D city.

Object-Oriented Reengineering.23



Code City

29 66

Packages are “districts™, “neighborhoods,” or
“city blocks”

Each “building” represents a class \

Width = Number of Attributes

Height = Number of Methods

Antennas => Classes with many methods and no
attributes

Parking lot => Classes with many attributes and
no methods

Skyscraper => Classes with a large number of
methods and has many attributes



Method change visialization

closeAllBuffers (..) m@

o8 closeAllBuffers(View, boolean) : boolean Qm:n

Change History Co-Changed Methods
12 changes

@ ° _closeBuffer(View, Buffer) : void

Last 7
e O, jedit- org.gjt.sp.jedit

Last 4 weeks (excluding last 7 days) updateMarkersFile(View) : boolean

()
[ Last 12 months (excluding last 4 weeks) ©  Buffer - org.git.sp jedit

09/21/2006 06:05 by hertzhaft ® getMarkersPath(VFS) : String
reorganized the saving of markers, reducing the use of Work ®
09/18/2006 06:29 by hertzhaft

Fixed 1527419: Setting or deleting markers should not dirty bt @ removeMarker(int) : void
08/10/2006 06:20 by kpouer

bug 1538051 fixed and some java 1.5 api used

07/11/2006 11:27 by kpouer ® removeAllMarkers() : void
some deprecated api usage removed

[ Last years (excluding last 12 months)
< @ addMarker(char, int) : void

Buffer - org.gjt.sp.jedit

© Buffer- org.gjt.sp.jedit

© Buffer - org.gjt.sp jedit

Embedding Evolutionary Context
Beck et al. Rethinking User Interfaces for Feature Location. ICPC 2015

Object-Oriented Reengineering.25



Method change visialization

Observation: Recent history is often
important than old history

closeAllBuffers

Change History

12 changes

Last 7 days

@ ° closeAllBuffers(View, boolean) : boolean Qm]

Last 4 weeks (excluding last 7 days)

Change History

method change
(darkness: #changes)

months

years
age: 12 months

weeks \ days
4 weeks 7 days

reks)

g the use of Work

sthould not dirty bt

Embedding Evolutionary Context

(..) L W]’

Co-Changed Methods

@ ° _closeBuffer(View, Buffer) : void

O, jEdit - org.gjt.sp. jedit

O cmo

updateMarkersFile(View) : boolean

<
© Buffer - org.gjt.sp.jedit

@ getMarkersPath(VFS) : String D 1
© Buffer- org.gjt.sp.jedit

ot

@ removeMarker(int) : void

© Buffer- org.gjt.sp jedit

Horm

® removeAllMarkers() : void

© Buffer- org.gjt.sp.jedit

@ addMarker(char, int) : void

Beck et al. Rethinking User Interfaces for Feature Location. ICPC 2015

Object-Oriented Reengineering.26



Software Developers

Selection: Group A: # 22 Elements in the intersection v of Lifs net “arch kemel “drvers attimestep 2008 v
Group A+B: # 22
Group B: # 29 Elements in the intersectior v of Lifs net “arch kemel “drivers attimestep 2(
Stabsde ve | w tersechons 9 Expana Enciusme 3 ¢ IrterieCNON v
_..- = allne. l.l_- ll-_- lll-.- lll_- .I-— lll_- d-_._ ll-,-
2008 2009 2010 201 2012 2013 2014 2015 7
|

Observation: Also, developers matter as a
context of the code.

Agarwal, S.; Beck, F.,: Set Streams: Visual Exploration of Dynamic Overlapping Sets.
In: Computer Graphics Forum, Jg. 39 (2020) Nr. 3, S. 383-391. doi:10.1111/cgf.13988

Object-Oriented Reengineering.27


https://dx.doi.org/10.1111/cgf.13988

State of the Art Tooling

Overview rustished *

|. source{d}
https://sourced.tech
https://github.com/src-d/engine

2. teamscale
https://www.cgse.eu/
https://github.com/cqse

3. codescene
https://codescene.io
https://github.com/empear-analytics




4. Restructuring

Identifying refactoring targets

Redistribute Responsibilities
+ Move Behaviour Close to Data
+ Eliminate Navigation Code
+ Split up God Class

+ Empirical Validation

Identifying refactorings in code

Refactoring-aware techniques



Identifying Refactoring Targets

Redistribute Responsibilities

Monster client
of data containers

Chains of
data containers

Split Up God Class

Eliminate Navigation Code

Data containers

v

Move Behaviour Close to Data




Split Up God Class

Problem: Break a class which monopolizes control?
Solution: Incrementally eliminate navigation code
* Detection:
+ measuring size
+ class names containing Manager, System, Root, Controller
+ the class that all maintainers are avoiding
* How:
+ move behaviour close to data + eliminate navigation code
+ remove or deprecate facade
* However:

+ If God Class is stable, then don't split
—> shield client classes from the god class



Split Up God Class

EmployeeManager

+hireEmployee(Employee employee)
+terminateEmployee(int employeeld)
+editEmployee(Employee employee)
+addVacationTime(int employeeld, int days)
+useVacationTime(int employeeld, int days)
+addAddress(int employeeld, Address address)
+removeAddress(int employeeld, int idAddress)
+giveBonus(int employeeld, int bonus)
+assignEquipment(int employeeld, Equipment equip)
+giveRaise(int employeeld, int amount)
+dockPay(int employeeld, int amount)
+addSchedule(int employeeld, Schedule schedule)
+addPhoneNumber(int employeeld, string phone)




Split Up God Class

EmployeeManager

PaymentManager

+hireEmployee(Employee employee)
+terminateEmployee(int employeeld)
+editEmployee(Employee employee)

+giveBonus(int employeeld, int amount)
+giveRaise(int employeeld, int amount)
+dockPay(int employeeld, int amount)

ScheduleManager

EmployeeContactManager

+addEmployeeSchedule(int employeeld, Schedule sch)

+addAddress(int employeeld, Address address)
+removeAddress(int employeeld, int addressld)
+addPhoneNumber(int employeeld, string phone)

VacationManager

+addVacationTime(int employeeld, int days)
+useVacationTime(int employeeld, int days)

EquipmentManager

+assignEquipment(int employeeld, EQquipment eq)




Identifying Refactorings in code

Refactoring is noise in evolution analysis

« Merge conflicts: when merging development branches
e Bug-inducing analysis (SZZ): flag refactoring edits as bug-
introducing changes

* Tracing requirements to code: miss traceability links due
to refactoring

e Regression testing: unnecessary execution of tests for
refactored code with no behavioral changes

e Code review/merging: refactoring edits tangled with the
actual changes intended by developers

e Dependency analysis: cause breaking changes to clients of
libraries and frameworks



Refactoring-Aware Techniques

Many refactoring-aware techniques:
* IntelliMerge & Refmerge — merge branches

* Neto et al. (ESEM ‘19) — detect bug inducing
changes

* APIDiff — adapt client software to library and
framework updates

* Wang et al. (ICSE ‘19) - select regression tests
* RefDistiller: assist code review

All developed in in the presence of refactoring
operations.



Refactoring-Aware Techniques

* Accurate refactoring detection is required
for the tools to be efficient

e RefactoringMiner (SOA tool) [Tsantalis et
al. TSE’20]

e RefactoringMiner has the highest average
precision (99.6%) and recall (94%) among
all competitive tools

e The tool takes an input two revisions (e.g.
commits) and returns a list of refactorings



5. Code integration

* Version Control Systems
* Branching

* Merging/integration

* Merge conflicts

Does not exist in the book
[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

Published work by researchers will be used



The Reengineering Life-Cycle

4
ey

Requirements

oL

(4) Code Integration

issues
* Conflicting changes

Object-Oriented Reengineering.41



Version Control Systems

A fundamental way that developers manage change is through
VCS.

g1t

-—
e

SUBVERSION

@K’ b Visual Studio
@ Team Foundation Server

mercurial

Object-Oriented Reengineering.42



Branching/Forking

Branch

ooo[
|<|<|< i

Mainline

Social Fork

Pull request




Merge Scenario

Development Time
>
master
Common
Ancestor
O O feature A
Merge
P1 Commit

feature Al

feature AZ3

feature AZ

Object-Oriented Reengineering.44



Collaborative developemt/ Merge Conflict

Foo.java
Base

Foo.java
Bob

foo() {
int x = getX();
int y = getY();
calcDist(x, y);
}

foo() {
int x = getX();
int y = getY();
caleDist(x, y);

}

FooHelper.Java
Alice

y

Foo.java

Alice

Foo.java
Merged Version

++<<<<<<< refs/bob

++>>>>>>> refs/alice

|

FooHelper.Java
Alice

Object-Oriented Reengineering.45




Refactoring-Aware tools

RefMerge

Step 1: Detect and Simplify Refactorings

PL -
Base Commit Merge Commit

Step 3: Merge
Step 2: Invert Refactorings

P Temporary
Merged Code

Refactored Code Inverted Code Base Commit
\ Step 5: Replay Refactorings

PR’ Temporary  Final Merged Code
Rename Method

M
/ Step 4: Detect Refactoring Conflicts STped Coty
foo() { >
Rename Method

<

Detect Refactorings, b0 { —_—

)

RefactoringMiner

Commit b
Commita

Merged Refactoring
List

Refactoring Interactions
Move & Rename Class

L
1
L
L
L
L
| 75 e m e ——————————————————— i o o
: )
'
Simplify & Order | \

Refactorings
i
L
L
L}
L
L}

] 1

1 1

1 1

1 1

1 1

1 1

! | Rename Class / | Rename Class / Extract Method .

' Move Class |Rename Method 1

Let Right - Conflicting Refactoring |
ProcessedRefList ProcessedRefList | | Extract Method / | Extract Method / List -
Rename Class Move Class 1 | Extract Method |Rename Method |
1 1

Extract Method Rename Method ' gx(lacl M;lh?gé '
Extract Method - ename Meth .

1 1

Ellis et at. A Systematic Comparison of Two Refactoring-aware Merging Techniques. 2022

https://github.com/ualberta-smr/RefactoringAwareMergingEvaluation

Object-Oriented Reengineering.46



6. Dynamic Analysis (& Testing)

Key Concept ldentification
Unit testing

Test coverage

Mutation testing




Introduction

* Dynamic Analysis verifies properties of a
system during execution

* Testing Analysis is one example of Dynamic
Analysis

+ Unit tests, integration tests, system tests, and
acceptance tests use dynamic testing



Testing

Tests are your life insurance! (OORP, p. 149)

Tests are essential to assure the quality of
refactoring activities.

Write Tests to Enable Evolution (OORP, p.153)

+ Good tests can find bugs on your artifact
+ Tests can also detect unwanted behavior

You can also write tests to understand a part of a
system (OORP, p.179)



ion testing

Regression Testing

[ ) & glossary.istgb.org (

o0 see more information about a term
1 Results

A type of change-related testing to detect whether defects have been introduce

overed in unchanged areas of the software.

Found

d or

A type of change-related
testing to detect whether
defects have been introduced
or uncovered in unchanged
areas of the software.

Object-Oriented Reengineering.50



Coverage

LCOV - code coverage report

Current view: top level Hit Total
Test: libbash test coverage Lines: 20640 34749 A re th e a reas u n d e r
Date: 2011-05-26 Functions: 1184 1287
Branches: 15689 37086
L] L]
[ Diectoys | LineCoverage | Functions® _ Change Suff|C|ent|)'
S e (— 95.7 % 314/328 98.2 % 55/56
t (1 97.0% 98/101 100.0 % 72172
| — 98.6 % 144146 100.0% 203/203
e 985% 214/217  1000%  45/45 C ove re t e
src/core/tests (] 98.9 % 351/355 99.3% 133/134
/builtins (] 100.0 % 9/9 93.3% 14/15
(] 100.0 % 35/35 91.7 % 11/12 °
e o 1000% 190/190  98.0%  99/101 Cur’re nt test SUIte7
L]

Generated by: LCOV version 1.9

[T oSN
org.apache. commons. collections. TestTrar Prnblems|Javadnc|DecIaration|Cnnsn|e [D Coverage &3 =0
E TestArrayStack TestAllPackages (31.10.2006 15:04:14) % ‘ ® Sﬁ = a8 - ‘ SlemeT ‘ O m are Cove ra e
E TestBeanMap - -
] org.apache.commans. collections. TestBin Element | Coverage | Covered Lines | Total Lines [ 4|
TestBoundedFifoBuffer - java - commons-collections - 79,5 % 10927 13738
TestBoundedFifoBufferz =-f3 ora.apache.commons.collections - 74,1% 3542 5183
R . reports before an
TestDoubleOrderedMap J| BagUtils.java = 86,7 % 13 15 [
] org.apache.commons. collections. TestExte :) BganMap.]av;a - 72,4 % 155 214
E TestFastarrayList J| BinaryHeap.java = 87,6 % 127 145 °
Ef] TestFastarrayList] J] BoundedFifoBuffer.java = 93,2% a2 88 a e r' re a Cto rl n
TestFastHashMap [J] BufferOverflowException.java - 55,6 % 5 9 °
TestFastHashMap1 BufferUinderflowException.java = 859% 8 3
TestFastTreeMap J| Bufferltils.java - 30,8 % 4 13
TestFastTreeMapl Closureltils. java - 93,9 % 31 33
4 [J] Collectionltils. java = 92,4% 293 317
_ __‘| Comparatorltils. java - 8,6 % 3 35
= Failure Trace [J] CursorableLinkedList.java = 854% 444 520 v |
1 | ‘Writable Smart Insert 149:28

Object-Oriented Reengineering.51



/. Mining Software Repositories (MSR)

*  What are software repositories?

*  Why should we mine Software
repositories?

*  What are some of the data sources of
software engineering data?

*  What are some of the existing tools we

can use to mine software engineering
data

*  What can we learn from MSR




The Reengineering Life-Cycle

4
ey

Requirements

oL

(5) Mining Software
Repositories

issues

* Mining the history

* Who did what

Object-Oriented Reengineering.53



What 1s a Software Repository?

Artifacts produced and archived during software development
* Technical artifacts
* Social artifacts




What 1s a Software Repository?

Bl apache [ kafka ' Public

& Watch 1.1k

1 Pull requests 953 Open

v/ 11,016 Closed

€) iuma KAFKA-13418¥upport key updates with TLS 1.3 (#11966)

- % Fork 11.3k

"y Star 21.5k

.

config
connect

core

docs
examples
generator/src
gradle

jmh-benchmarks

licenses

X Saed178] 12 hours ago & 9,874 commits
lding kafka-storadgk.bat file (similar to kafka-storage.sh) fo... 16 days ago
k class comparisoff in “AlterConfigPolicy.Req - ) -
33 kafka
. 9
Contributors 8s4
MINOR _ |{DOWNLOAD | .
OO0 99|
KAFKA L J0
. . ¥ 1 « Released January 24, 2022
MINOR 1.7 hq 3.0.0 1go
KAFKA + 873 contributors ]( 3y Released September 21, 2021 190
2.8.0
L s in examples R S ago
anguages « Released April 19, 2021
a——— ——— [99€d string fiell 5 7 o ) |ra%e
® Java 74.2% ® Scala 22.7%
(#11885) * Released Dec 21, 2020 5} ago
® Python 2.7% Shell 0.2% —_—
Roff 0.1% Batchfile 0.1% (#11870) h s ago
* Released Aug 3, 2020
MINOR: Add missing licenses and update versions in LICENSE-Dinary... 7 MONtNs ago

Apache Kafka is a distributed event store and stream-processing platform

EElMyalANNaYaEm-@a




Why should we mine Software repositories!?

The goal ... is to improve software engineering practices
by uncovering interesting and actionable information
about software systems and projects using the vast

amounts of software data

+ Understand software development process
+ Support and/or improve the maintenance of
software systems

+ Exploit knowledge in planning the future
development

- If the data analysis in not carefully
designed and executed, it can lead to
invalid conclusions




What are some of the data sources of software engineering
data?

¥

Programmer

SW Architect

Computer Mediated
Tools

Client ' User

S 2 -
Source Bug Message
Code Reports Archives

Current and historical artifacts and interactions are registered in software repositories

This list 1s not exhaustive.
Qn. What are some of the additional software engineering data
sources that can be mained?

Object-Oriented Reengineering.57



What are some of the existing tools we can use to mine
software engineering data?

PyDriller

A Python framework that helps developers in analyzing Git
repositories. With PyDriller you can easily extract information
about commits, developers, modified files, diffs, and source code.

RepoDriller

A Java framework that helps developers on mining software
repositories. With it, you can easily extract information from any Git
repository, such as commits, developers, modifications, diffs, and
source codes, and quickly export CSV files.

Build your own tool/script
Sometimes/ most of the times, you have to build your own tool or script
to mine your own data




What can we learn from MSR

Observation: Recent history is often
important than old history

closeAllBuffers

Change History

12 changes

Last 7 days

@ ° closeAllBuffers(View, boolean) : boolean Qm]

Last 4 weeks (excluding last 7 days)

Change History

method change
(darkness: #changes)

months

years
age: 12 months

weeks \ days
4 weeks 7 days

reks)

g the use of Work

sthould not dirty bt

Embedding Evolutionary Context

(..) L W]’

Co-Changed Methods

@ ° _closeBuffer(View, Buffer) : void

O, jEdit - org.gjt.sp. jedit

O cmo

updateMarkersFile(View) : boolean

<
© Buffer - org.gjt.sp.jedit

@ getMarkersPath(VFS) : String D 1
© Buffer- org.gjt.sp.jedit

ot

@ removeMarker(int) : void

© Buffer- org.gjt.sp jedit

Horm

® removeAllMarkers() : void

© Buffer- org.gjt.sp.jedit

@ addMarker(char, int) : void

Beck et al. Rethinking User Interfaces for Feature Location. ICPC 2015

Object-Oriented Reengineering.59



What can we learn from MSR

Selection: Group A: # 22 Elements in the intersection v of Lifs net *arch kemel “drivers attimestep 2008 v |x
Gvou A+B: ¥ 22
4 il Group B: #29 Elements in the intersectior v of Lis net “arch kemel “drivers attimestep 2017 v |x
t Stabity v apie Exclusive | st intersechons v Expana Exciusme 3 2 e e CNONS v
. - allsu ll-_- lll.. lll_. ll.— lll.- ol e =

Observation: Also, developers matter as a
context of the code.

Agarwal, S.; Beck, F.,: Set Streams: Visual Exploration of Dynamic Overlapping Sets.
In: Computer Graphics Forum, Jg. 39 (2020) Nr. 3, S. 383-391. doi:10.1111/cgf.13988

Object-Oriented Reengineering.60


https://dx.doi.org/10.1111/cgf.13988

Developers who touched files

500 A

400 A

300 A

weeks

200 R

100 A

0 50 100 150 200 250 300 350
file

Object-Oriented Reengineering.61



9. Conclusion

|. Introduction
Software changes and that requires planning
2. Reverse Engineering
How to understand your code
3. Visualization
Scalable approach
4. Restructuring
How to Refactor Your Code
5. Code Integration
How to resolve conflicts
6. Dynamic Analysis (& Testing)
To be really certain
7. Mining Software Repositories
Learn from the past
8. Conclusion




Goals

We will try to convince you:
* Programs change!

* Reverse engineering forward engineering and
reengineering are essential activities in the lifecycle
of any successful software system. (And especially
OO ones!)

* There is a large set of lightweight tools and
techniques to help you with reengineering.

* Despite these tools and techniques, people must do
job and they represent the most valuable resource.

— Did we convince you ?




