
Software Product Design and
Development II

CS 473

John Businge

August 2022

http://scg.unibe.ch/download/oorp/

Object-Oriented Reengineering.2

Schedule
1. Introduction

Software changes and that requires planning

2. Reverse Engineering
How to understand your code

3. Visualization
Scalable approach

4. Restructuring
How to Refactor Your Code

5 . Code Integration
How to resolve conflicts

6. Dynamic Analysis (& Testing)
To be really certain

7. Mining Software Repositories
Learn from the past

8. Conclusion

Object-Oriented Reengineering.3

Goals

We will try to convince you:

• Programs change!

• Reverse engineering, forward engineering and
reengineering are essential activities in the lifecycle of any
successful software system. (And especially OO ones!)

• There is a large set of lightweight tools and techniques to
help you with reengineering.

• Despite these tools and techniques, people must do job and
they represent the most valuable resource.

Object-Oriented Reengineering.4

Program Change

Social Fork

Branch

Mainline

Pull request

Object-Oriented Reengineering.5

Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance Effort
Between 50% and 75% of
global effort is spent on

“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering?
• Better software methods & tools

(database schemas, CASE-tools, objects,
components, …)?

Object-Oriented Reengineering.6

Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
Þ even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

Object-Oriented Reengineering.7

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a]
identified several “laws” of system change.

Continuing change

• A program that is used in a real-world
environment must change, or become
progressively less useful in that environment.

Increasing complexity

• As a program evolves, it becomes more complex,
and extra resources are needed to preserve and
simplify its structure.

Those laws are still applicable…

Darw
in

Enthropy

Object-Oriented Reengineering.8

Lehman's Laws

Businge et al. An empirical study of the evolution of Eclipse third-party plug-ins, IWPSE - 2010

Object-Oriented Reengineering.9

Object-Oriented Reengineering.10

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

• people centric
• lightweight

New
Feature

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform
Conditionals to
Polymorphism

Object-Oriented Reengineering.11

Object-Oriented Reengineering.12

2. Reverse Engineering

• What and Why
• First Contact

+ Interview during Demo

• Initial Understanding

What and Why ?

Definition
Reverse Engineering is the process of analysing a subject system

+ to identify the system’s components and their interrelationships and
+ create representations of the system in another form or at a higher level of

abstraction. — Chikofsky & Cross, ’90

Motivation
Understanding other people’s code
(cfr. newcomers in the team, code reviewing,
original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

Object-Oriented Reengineering.13

Object-Oriented Reengineering.14

The Reengineering Life-Cycle

(0) req. analysis
(1) model capture
issues
• scale
• speed
• accuracy
• politics

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

New
Feature

Object-Oriented Reengineering.15

First Contact

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

feasibility assessment
(one week time)

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read
about it

First Project Plan

Use standard templates, including:
• project scope

+ see "Setting Direction"

• opportunities
+ e.g., skilled maintainers, readable source code, documentation

• Risks
+ E.g., absent test suites, missing libraries, …
+ record likelihood (unlikely, possible, likely)

& impact (high, moderate, low) for causing problems

• go/no-go decision
• activities

+ fish-eye view

Object-Oriented Reengineering.16

• Solution: interview during demo
- select several users
- demo puts a user in a positive mindset
- demo steers the interview

Interview during Demo

Solution: Ask the user!

• ... however
+ Which user ?

+ Users complain
+ What should you ask ?

Problem: What are the typical usage
scenarios?

Object-Oriented Reengineering.17

softwarevisualisation

Object-Oriented Reengineering.18

Initial Understanding

understand Þ
higher-level model

Top down

Speculate about Design

Recover
design

Analyze the
Persistent Data

Study the
Exceptional

Entities

Recover
database

Bottom up

Identify
problems

ITERATION

Object-Oriented Reengineering.19

3. Software Visualization

• Introduction
+ The Reengineering life-cycle

• Examples
• Lightweight Approaches

+ tooling

Object-Oriented Reengineering.20

The Reengineering Life-cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

(2) problem detection
issues
• Tool support
• Scalability
• Efficiency

New
Feature

UML Diagrams

• (Mostly) Simple and Standard Way to present an
abstract visualization of a system

• UML defines 14 diagrams
• Useful to plan and design the reengineering

project
• You will be using UML diagrams to show the

system before and after the change

Object-Oriented Reengineering.21

Nodes: Classes
Edges: Inheritance Relationships
Width: Number of attributes
Height: Number of methods
Color: Number of lines of code

System Complexity View

Object-Oriented Reengineering.22

Code City

Object-Oriented Reengineering.23

CodeCity is a visualization concept
for source code.

The source code is shown as an
interactive 3D city.

Code City

Object-Oriented Reengineering.24

• Packages are “districts”, “neighborhoods,” or
“city blocks”

• Each “building” represents a class \
• Width = Number of Attributes
• Height = Number of Methods
• Antennas => Classes with many methods and no

attributes
• Parking lot => Classes with many attributes and

no methods
• Skyscraper => Classes with a large number of

methods and has many attributes

Object-Oriented Reengineering.25

Embedding Evolutionary Context
Beck et al. Rethinking User Interfaces for Feature Location. ICPC 2015

Method change visialization

Method change visialization

Object-Oriented Reengineering.26

Embedding Evolutionary Context
Beck et al. Rethinking User Interfaces for Feature Location. ICPC 2015

Observation: Recent history is often
important than old history

Software Developers

Object-Oriented Reengineering.27

Agarwal, S.; Beck, F.,: Set Streams: Visual Exploration of Dynamic Overlapping Sets.
In: Computer Graphics Forum, Jg. 39 (2020) Nr. 3, S. 383-391. doi:10.1111/cgf.13988

Observation: Also, developers matter as a
context of the code.

https://dx.doi.org/10.1111/cgf.13988

State of the Art Tooling

Object-Oriented Reengineering.28

1. source{d}
https://sourced.tech
https://github.com/src-d/engine

2. teamscale
https://www.cqse.eu/
https://github.com/cqse

3. codescene
https://codescene.io
https://github.com/empear-analytics

Object-Oriented Reengineering.29

4. Restructuring

Identifying refactoring targets

Redistribute Responsibilities
+ Move Behaviour Close to Data
+ Eliminate Navigation Code

+ Split up God Class
+ Empirical Validation

Identifying refactorings in code
Refactoring-aware techniques

Redistribute Responsibilities

Eliminate Navigation Code

Data containers

Monster client
of data containers

Split Up God Class

Move Behaviour Close to Data

Chains of
data containers

Identifying Refactoring Targets

Object-Oriented Reengineering.30

Object-Oriented Reengineering.31

Split Up God Class

Problem: Break a class which monopolizes control?

Solution: Incrementally eliminate navigation code

• Detection:
+ measuring size
+ class names containing Manager, System, Root, Controller

+ the class that all maintainers are avoiding

• How:
+ move behaviour close to data + eliminate navigation code
+ remove or deprecate façade

• However:
+ If God Class is stable, then don't split

Þ shield client classes from the god class

Object-Oriented Reengineering.32

Split Up God Class

Object-Oriented Reengineering.33

Split Up God Class

Identifying Refactorings in code

Refactoring is noise in evolution analysis
• Merge conflicts: when merging development branches
• Bug-inducing analysis (SZZ): flag refactoring edits as bug-

introducing changes
• Tracing requirements to code: miss traceability links due

to refactoring
• Regression testing: unnecessary execution of tests for

refactored code with no behavioral changes
• Code review/merging: refactoring edits tangled with the

actual changes intended by developers
• Dependency analysis: cause breaking changes to clients of

libraries and frameworks

Many refactoring-aware techniques:
• IntelliMerge & Refmerge – merge branches
• Neto et al. (ESEM ‘19) – detect bug inducing

changes
• APIDiff – adapt client software to library and

framework updates
• Wang et al. (ICSE ‘19) - select regression tests

• RefDistiller: assist code review
All developed in in the presence of refactoring
operations.

Object-Oriented Reengineering.35

Refactoring-Aware Techniques

Refactoring-Aware Techniques

• Accurate refactoring detection is required
for the tools to be efficient

• RefactoringMiner (SOA tool) [Tsantalis et
al. TSE’20]

• RefactoringMiner has the highest average
precision (99.6%) and recall (94%) among
all competitive tools

• The tool takes an input two revisions (e.g.
commits) and returns a list of refactorings

Object-Oriented Reengineering.36

Object-Oriented Reengineering.40

5. Code integration

• Version Control Systems
• Branching
• Merging/integration
• Merge conflicts

Does not exist in the book
[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

Published work by researchers will be used

Object-Oriented Reengineering.41

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

(4) Code Integration

issues
• Conflicting changes

New
Feature

(0) Clone&nwn

(4) integration

Version Control Systems

Object-Oriented Reengineering.42

A fundamental way that developers manage change is through
VCS.

Branching/Forking

Object-Oriented Reengineering.43

Merge Scenario

Object-Oriented Reengineering.44

Collaborative developemt/ Merge Conflict

Object-Oriented Reengineering.45

FooHelper.Java
Alice

+ foo() {

+ int x = getX();
+ int y = getY();
+ calcDist(x, y);
+ }

. . .

. . .

FooHelper.Java
Alice

+ foo() {

. . .

. . .

+ x += 2;
+ int x = getX();

+ int y = getY();
+ calcDist(x, y);
+ }

Refactoring-Aware tools

Object-Oriented Reengineering.46

Ellis et at. A Systematic Comparison of Two Refactoring-aware Merging Techniques. 2022
https://github.com/ualberta-smr/RefactoringAwareMergingEvaluation

RefMerge

Object-Oriented Reengineering.47

6. Dynamic Analysis (& Testing)

• Key Concept Identification
• Unit testing
• Test coverage
• Mutation testing

Introduction

• Dynamic Analysis verifies properties of a
system during execution

• Testing Analysis is one example of Dynamic
Analysis
+ Unit tests, integration tests, system tests, and

acceptance tests use dynamic testing

Object-Oriented Reengineering.48

Testing

• Tests are your life insurance! (OORP, p. 149)
• Tests are essential to assure the quality of

refactoring activities.
• Write Tests to Enable Evolution (OORP, p.153)

+ Good tests can find bugs on your artifact
+ Tests can also detect unwanted behavior

• You can also write tests to understand a part of a
system (OORP, p.179)

Object-Oriented Reengineering.49

Regression Testing

Object-Oriented Reengineering.50

A type of change-related
testing to detect whether
defects have been introduced
or uncovered in unchanged
areas of the software.

Coverage

Object-Oriented Reengineering.51

Are the areas under
change sufficiently
covered by the
current test suite?

Compare coverage
reports before and
after refactoring!

Object-Oriented Reengineering.52

7. Mining Software Repositories (MSR)

• What are software repositories?
• Why should we mine Software

repositories?
• What are some of the data sources of

software engineering data?
• What are some of the existing tools we

can use to mine software engineering
data

• What can we learn from MSR

Object-Oriented Reengineering.53

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

New
Feature

(4) integration

(4) program transformation

(5) Mining Software
Repositories
issues
• Mining the history
• Who did what

Object-Oriented Reengineering.54

What is a Software Repository?

Artifacts produced and archived during software development
• Technical artifacts
• Social artifacts

Apache Kafka is a distributed event store and stream-processing platform

What is a Software Repository?

1.7
k

Object-Oriented Reengineering.55

Why should we mine Software repositories?

Object-Oriented Reengineering.56

The goal … is to improve software engineering practices
by uncovering interesting and actionable information
about software systems and projects using the vast

amounts of software data

+ Understand software development process
+ Support and/or improve the maintenance of
software systems
+ Exploit knowledge in planning the future
development

- If the data analysis in not carefully
designed and executed, it can lead to
invalid conclusions

What are some of the data sources of software engineering
data?

Object-Oriented Reengineering.57

This list is not exhaustive.
Qn. What are some of the additional software engineering data
sources that can be mained?

What are some of the existing tools we can use to mine
software engineering data?

Object-Oriented Reengineering.58

PyDriller
A Python framework that helps developers in analyzing Git
repositories. With PyDriller you can easily extract information
about commits, developers, modified files, diffs, and source code.

RepoDriller
A Java framework that helps developers on mining software
repositories. With it, you can easily extract information from any Git
repository, such as commits, developers, modifications, diffs, and
source codes, and quickly export CSV files.

Build your own tool/script
Sometimes/ most of the times, you have to build your own tool or script
to mine your own data

What can we learn from MSR

Object-Oriented Reengineering.59

Embedding Evolutionary Context
Beck et al. Rethinking User Interfaces for Feature Location. ICPC 2015

Observation: Recent history is often
important than old history

What can we learn from MSR

Object-Oriented Reengineering.60

Agarwal, S.; Beck, F.,: Set Streams: Visual Exploration of Dynamic Overlapping Sets.
In: Computer Graphics Forum, Jg. 39 (2020) Nr. 3, S. 383-391. doi:10.1111/cgf.13988

Observation: Also, developers matter as a
context of the code.

https://dx.doi.org/10.1111/cgf.13988

Developers who touched files

Object-Oriented Reengineering.61

Object-Oriented Reengineering.62

9. Conclusion
1. Introduction

Software changes and that requires planning

2. Reverse Engineering
How to understand your code

3. Visualization
Scalable approach

4. Restructuring
How to Refactor Your Code

5 . Code Integration
How to resolve conflicts

6. Dynamic Analysis (& Testing)
To be really certain

7. Mining Software Repositories
Learn from the past

8. Conclusion

Object-Oriented Reengineering.63

Goals

Þ Did we convince you ?

We will try to convince you:

• Programs change!

• Reverse engineering forward engineering and
reengineering are essential activities in the lifecycle
of any successful software system. (And especially
OO ones!)

• There is a large set of lightweight tools and
techniques to help you with reengineering.

• Despite these tools and techniques, people must do
job and they represent the most valuable resource.

