
Software Integration

John Businge
john.businge@unlv.edu



Version Control Systems

• Keep track of the software development history
• Became popular with the rise of distributed software development
• Offer practices that facilitate collaborative software development

• Offer practices that facilitate collaborative software development



Branching/Forking
• A branch is an instance of the source code
• Developers create multiple branches and apply their changes in 

parallel
• Reasons for branching: isolating development work, bug fixes, 

releases, etc.



Merging/integation

Merge Scenario

Mahmoudi et al. Are Refactorings to Blame? An Empirical Study of Refactorings in Merge Conflicts, SANER 2019



Merge Conflict

• Merge conflicts may arise because of inconsistent changes to the code
• 16% of merge scenarios lead to conflicts [1]
• Developers have to resolve such conflicts before proceeding
• Wastes their time and distracts them from their main tasks
• Based on the nature of the merge scenario, a textual three-way merge 

tool, such as the one used by GIT might not be able to merge the two 
versions of a file automatically.

1. Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of collaboration conflicts” 



Merge Conflict
For a given conflicting merge scenario, GIT can report conflicts across 
multiple files. GIT categorizes conflicts into six types:
• add/add: When both merge, parents add a new file with the same 

name but with different contents.
• content: When both parents apply different changes to the same file 

in the same location.
• modify/delete: When P1 modifies a file while P2 deletes it.
• rename/add: When P1 renames a file, and P2 adds a new file with 

the same name.
• rename/delete: When P1 renames a file, and P2 deletes it.
• rename/rename: When both parents rename a file to different 

names.

Content Level merge conflict

File Level merge conflict



FooHelper.Java
Alice

+ foo() {
+   int x = getX();
+   int y = getY();
+   calcDist(x, y);
+ } 

. . .

. . .

FooHelper.Java
Alice

+ foo() {
+   int x = getX();
+   x += 2;
+   int y = getY();
+   calcDist(x, y);
+ } 

. . .

. . .

+   x += 2;



Refactoring Aware Operation-Based Merging
1. Detect conflicting regions

2. Detect evolutionary changes

3. Detect Refactorings

4. Detect involved refactorings in the conflicting region

https://github.com/ualberta-smr/RefactoringsInMergeCommits

Mahmoudi et al. Are Refactorings to Blame? An Empirical Study of Refactorings in Merge Conflicts (2019). [https://ieeexplore.ieee.org/document/8668012]



Merge Scenario



Step 1. Detecting Conflicting Regions

• First detect all merge scenarios
• Replay the merge scenario using the following commands:
• git checkout P1
• git merge P2

• If conflicting, git merge will report a list of conflicting files and their 
conflict types. The information is saved in the database. 
• git diff command will report all conflicting regions for Java files with 

content conflicting types.
• All the information is recorded in the database



Step 1. Detecting Conflicting Regions

Find merge commits Find conflicting regions

• git merge reports
• conflicting files
• conflicting types

• git diff – conflicting region

P1 P2 Conflicting region



• Tracking the historical evolution of the conflicting region between 
common ancestor (CA) and  P1/P2.
• For each conflicting region, we detect all commits that have touched 

that region
• These commits are called evolutionary commits
• Use the following commands:

• git log -L startP1,endP1:file P2..P1

• git log -L startP2,endP2:file P1..P2

Step 2. Detect evolutionary changes

Revision range of file in P1

includes all commits that are reachable 
from P1 and not reachable from P2



Step 2. Detect evolutionary changes

Commit 1

Commit 2

Evolutionary 
commits



Step 3. Detect Refactorings

• RefactoringMiner is used in all the evolutionary commits
• We record the types and code regions of each refactoring to the 

database
• RefactoringMiner reports the files and the exact code ranges (with 

line numbers) that were touched by a refactoring operation.
• At least two code ranges for a refactoring change are stored: one code 

range corresponds to the refactored code element before refactoring, 
and the other corresponds to the element after refactoring.



Step 4. Detect involved refactorings

• The code range information for refactoring operations and 
evolutionary changes is used
• If there is an intersection between a refactoring and a refactoring, we 

call that refactoring an involved refactoring.



Step 4. Detect involved refactorings



Step 4. Detect involved refactorings

• In the final step, the identification of the refactoring operations that have affected the 
evolution of conflicting regions. In other words, we are trying to determine if an 
evolutionary change that later leads to a conflict contains a refactoring operation.

• Using the code range information for both refactoring operations (Step 3) and 
evolutionary changes to conflicting regions (Step 2), they determine if there is an overlap 
between them.

• They consider a refactoring and evolutionary change as overlapping if they have at least 
one line in common, either in their old-commit code ranges or in their new-commit code 
ranges.

• They call such refactoring operations that have overlapping code ranges with an 
evolutionary change involved in refactoring operations since they are involved in the 
changes that are related to the conflicting region.

• In the example of Figure, Step 4 shows that the refactoring in commit #1 would not be 
considered as an involved refactoring, while the refactoring in commit #2 would be 
considered so.



Refactoring-Aware tools

Ellis et at. A Systematic Comparison of Two Refactoring-aware Merging Techniques. 2022
https://github.com/ualberta-smr/RefactoringAwareMergingEvaluation

RefMerge



The Project

• You will use RefactoringsInMergeCommits with the 
git cherry-pick instead of git merge.

• You will employ the same approach of mining git logs 
to extract interesting data for the project.

• Let us go to the Lab.


