Subway Simulation

Document: | System Specification
Version: 2.0

Date: 20 November 2022
Author: John Businge
Status: Delivered

1 Summary

This document contains the specification for a computer system that can execute
a subway simulation. It has been written for the course “472 - Software Product
Design and Development I” (Bachelor of computer science - UNLV).

2 Context

Since February 1st, 2022, the city center of Las Vegas has become a low-emission
zone. Only vehicles that meet strict environmental regulations may enter this zone.
Since many cars are no longer allowed in the city center, regional transport company
RTC expects an increase in its number of passengers. Therefore, they need to pre-
dict subway traffic in advance (in terms of occupation and peak times). Accordingly,
RTC has opted to develop a simulation model of subway traffic.

RTC has asked UNLV to develop this simulation. The computer science bachelor
students will be tasked to work on this project in the “Computer Graphics” and
“Software Product Design and Development I” courses.

3

Legend

The requirements specification has been drafted on the basis of use-cases. Each use-
case describes a small part of the desired functionality. The intention is that during
each phase of the project different use-cases are implemented. A typical use-case
contains the following components:

Reference number & title:
Used to identify or refer to a use-case.

Priority:

The specification of the system demands more than what can be delivered within
the foreseen time. That is why we use the priority of a use-case to indicate to what
extent its functionality is important. The priority can be (in order of importance):
REQUIRED (this use case must be completed), IMPORTANT (not essential but
preferably deliver), USEFUL (interesting but can be omitted).

Goal:
Brief description of the goal of the use case, i.e. what the use case contributes to
the entire functionality.

Precondition:
Brief description of the required properties at the start of the use-case.

Postcondition:
Brief description of the required properties at the end of the use-case.

Steps:

A sequential description of how the use-case executes if everything goes well (the
so-called "happy day scenario ”). The steps are numbered and may include control
instructions (WHILE, IF, ...).

Exceptions:

A list of possible deviations from the happy day scenario and how they should be
treated. An exception (a) refers to the number of the step where the exception may
occur, (b) contains a condition that indicates when the exception occurs, and (c)
describes very briefly how the exception will be treated.

Example:
An example of the input or output.

Sometimes a use-case is an extension of another use-case. Then the following com-
ponents are relevant:

o Extension:
A reference to the use-case that is being extended.

e Steps:
A list of additional and / or modified steps with regard to the use-case that is being
extended.
An extension (a) refers to the step number being extended, (b) states whether the
extension is before, after, or during the step, and (c) describes what exactly will
happen in the extension.

4 Overzicht

Use-Case Prioritity
1: Input

1.1 Parsing of trams and stations REQUIRED
1.2 Parsing of trams and stations with type/| REQUIRED
1.3 Parsing of trams with vehicle number IMPORTANT
1.4 Parsing of stations with multiple tracks USEFUL

2: Output

2.1 Simple output REQUIRED
2.2 Graphical representation IMPORTANT
2.3 Integration with Graphics USEFUL
3: Simulation

3.1 Moving trams REQUIRED
3.2 Simulation with multiple trams REQUIRED
3.3 Automatic simulation REQUIRED
3.4 Advanced time simulation| IMPORTANT
3.5 Collision prevention IMPORTANT
3.6 Passenger simulation USEFUL
3.7 Turnover per tram USEFUL
3.8 Statistical data processing USEFUL
4: Userinterface

4.1 GUI for simulation USEFUL
4.2 GUI for moving trams USEFUL
4.3 GUI for statistical datal USEFUL

1.1. Parsing of trams and stations

Priority:
REQUIRED

Goal:
Parsing the schedule of the subway network: the different stations, how they are
connected to each other, and the different trams.

Precondition:
An ASCII file with a description of the stations and trams. (See Appendix @l for
more information about the XML format)

Postcondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Steps:

1. Open inputfile

2. WHILE Not at end of file

2.1. Detect the type of element (STATION, TRAM)

2.2. Read data of the element

2.3. IF Verify data is valid

2.3.1. THEN Add the element to the virtual subway network
2.3.1. ELSE Errormessage + go to next element in the file

3. Verify consistency of the subway network

4. Close inputfile

Exceptions:

2.1. [Unrecognized element] Errormessage + go to next element in the file = continue from
step 2

2.2. [Invalid data] Errormessage + go to next element in the file = continue from step 2
3. [Inconsistent subway network] Errormessage = continue from step 4

Example:
A subway network with three stations (A,B,C), one track (12) and one tram (12).

<STATION>
<name>A</name>
<next>B</next>
<previous>C</previous>
<track>12</track>
</STATION>
<STATION>
<name>B</name>
<next>C</next>
<previous>A</previous>
<track>12</track>
</STATION>
<STATION>
<name>C</name>
<next>A</next>
<previous>B</previous>
<track>12</track>
</STATION>
<TRAM>
<1line>12</line>
<capacity>32</capacity>
<speed>60</speed>
<startStation>A</startStation>
</TRAM>

1.2. Parsing of trams and stations with type

Priority:
REQUIRED

Goal:

In May 2020, RTC upgraded part of its trams to a new model: the Albatross. The
goal is to eventually replace all the old PCC trams, yet we are still in a transition
phase where both types of trams are being used simultaneously. To achieve a more
realistic simulation, it must be possible to distinguish between the two types of trams.
The albatross tram spans 42 meters, which is considerably longer than the old PCC
trams. As a result, they cannot stop at above-ground stops since other traffic would
be hindered. It must, therefore, also be possible to distinguish between two types of
stations: the underground "metro station” and an above-ground “stop”. Note that
the capacity and speed attributes are no longer necessary, as they can be deduced
from the tram type (see Appendix .

Extension:
Steps:
[2, during] Parse the extra ’type’ attribute

Exceptions:
None

Example:
An example of each type. Note that this example is not a complete input.

<STATION>
<name>A</name>
<next>B</next>
<previous>C</previous>
<track>7</track>
<type>stop</type>
</STATION>
<STATION>
<name>D</name>
<next>E</next>
<previous>F</previous>
<track>15</track>
<type>station</type>
</STATION>
<TRAM>
<line>7</line>
<type>PCC</type>
<startStation>A</startStation>
</TRAM>
<TRAM>
<line>15</line>
<type>Albatross</type>
<startStation>D</startStation>
</TRAM>

1.3. Parsing of trams with vehicle number

Priority:
IMPORTANT

Goal:
To achieve a more realistic simulation, it should be possible for multiple trams to
ride the same line. A vehicle number is then required to identify trams.

Extension:

[Use Case 1.1]

Steps:
[2, during] Parse the extra ’vehicle number’ attribute

Exceptions:
None

Example:
Two trams on line 12, given the input from

<TRAM>
<line>12</line>
<vehicle>1</vehicle>
<type>PCC</type>
<startStation>A</startStation>
</TRAM>
<TRAM>
<line>12</line>
<vehicle>2</vehicle>
<type>PCC</type>
<startStation>B</startStation>
</TRAM>

1.4 Parsing of stations with multiple tracks

Priority:
USEFUL

Goal:
To achieve a more realistic simulation, it should be possible for a station to contain

multiple tracks.

Extension:

[Use Case 1.1

Steps:
[2, during] Parse the extra ’track’ element and its attributes

Exceptions:
None

10

Example:

Three stations with two tracks each, where track 21 follows the same route as track
12 in the other direction. Note that, with this extension of [use case 1.1} the structure
of the input XML is changed.

<STATION>
<name>A</name>
<TRACK>
<track>12</track>
<next>B</next>
<previous>C</previous>
</TRACK>
<TRACK>
<track>21</track>
<next>C</next>
<previous>B</previous>
</TRACK>
</STATION>
<STATION>
<name>B</name>
<TRACK>
<track>12</track>
<next>C</next>
<previous>A</previous>
</TRACK>
<TRACK>
<track>21</track>
<next>A</next>
<previous>C</previous>
</TRACK>
</STATION>
<STATION>
<name>C</name>
<TRACK>
<track>12</track>
<next>A</next>
<previous>B</previous>
</TRACK>
<TRACK>
<track>21</track>
<next>B</next>
<previous>A</previous>
</TRACK>
</STATION>

11

2.1. Simple output

Priority:
REQUIRED

Goal:
Output all data from the virtual subway system.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
The system generated an ASCII file that contains all data from the virtual subway
network.

Steps:

1. Open outputfile

2. WHILE Stations available

2.1. Write data of station

2.2. Write data per track, i.e. capacity of trams on the track
3. Close outputfile

Exceptions:
None

Example:
Given the input from

Station A

<- Station C

-> Station B

Track 12: Tram with 32 seats

Station B
<- Station A
-> Station C
Track 12

Station C
<- Station
-> Station A
Track 12

[oe]

12

2.2. Graphical representation

Priority:
IMPORTANT

Goal:
The state of the subway system is displayed graphically.

Precondition:
The system has been initialized correctly.

Postcondition:
The system has generated a text file (ASCII) in which the state of the subway system
is described.

Steps:

1. Open the outputfile

2. Draw the current state of the subway system
3. Close the outputfile

Exceptions:

None

Example:

In case there are three STATIONS (A, B, C) and two trams (T):

T T

13

2.3 Integration with Graphics
Priority:
USEFUL

Goal:
To convince the city authorities of Antwerp, our client would like to have a 3D visu-
alization of the simulation. For this you can use a graphics engine of choice.

Precondition:
The system has been initialized correctly.

Postcondition:
Every movement of trams is displayed in a 3D environment.

14

3.1. Moving trams

Priority:
REQUIRED

Goal:
Simulation of trams on the subway network.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
A tram is located on a new location in the subway network. The system has printed
a message with the details of the movement.

Steps:
1. Carry out movement for tram on given track in given station
2. Write overview

Exceptions:

None

Example:
Given the input from

Tram 12 moved from station A to station B.

15

3.2. Simulation with multiple trams

Priority:
REQUIRED

Goal:
Run the simulation for multiple trams.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
The simulation has moved each tram to its next location in the subway network.

Steps:
1. FOREACH Tram
1.1 Execute [use-case 3.11

16

3.3. Automatic simulation

Priority:
REQUIRED

Goal:

Run the simulation automatically for a given amount of time.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
The simulation has halted after the given amount of time.

Steps:
1. WHILE Current time < end time
1.1 Execute [use-case 3.2

1.2 Increase current time by one

17

3.4. Advanced time simulation

Priority:
IMPORTANT

Goal:

To achieve a more realistic simulation of trams, time should be simulated correctly.
Start the simulation at 12:00:00, and run the simulation according to the timings in
Appendix [4]

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
The simulation has halted after the given amount of time.

Extension:

[Use case 3.3

18

3.5. Collision prevention

Priority:
IMPORTANT

Goal:
Trams on the same track cannot overtake each other, but must wait until the previous
tram leaves the next station.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
A tram that has to go to station X waited in station X-1 if another tram already
occupied station X.

Extension:

[Use case 3.2

Steps:

[1.1, before]

1.1 IF next station is occupied
1.1.1 wait in current station

19

3.6. Passenger simulation

Prioritity:
USEFUL
Goal:

To achieve a more realistic simulation, every tram needs to keep track of the amount
of passengers currently riding the tram.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:The number of passengers on a tram can be given at any time during
the simulation.

Extension:

[Use case 3.1]

Steps:

[1, before] 1.1 WHEN a tram leaves a station

1.1.1 a random number is generated between the current and maximum capacity
1.1.2 the tram’s current capacity is increased by this number

[1, after] 1.2 WHEN a tram arrives at a station
1.2.1 a random number is generated between zero and the current capacity of the tram
1.2.2 the tram’s current capacity is decreased by this number

20

3.7. Turnover per tram

Priority:
USEFUL

Goal:
To simulate the potential profit, every tram needs to keep track of its turnover.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:The current turnover of a tram can be given at any time during the
simulation.

Extension:

[Use case 3.6]

Steps:
[1.1.2, after] 1.1.3 the tram’s current turnover is increased by 2 euro for each boarding
passenger

21

3.8. Statistical data processing

Priority:
USEFUL

Goal:
During the simulation, relative data is collected regarding current capacity and
turnover.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
Report generated with statistical data.

Extension:
[Use case 3.7

Steps:

1. WHILE Simulation is running
1.1 Collect data from each tram
2. Write data to CSV file

22

4.1. GUI for simulation

Priority:
USEFUL

Goal:
Have a user interface for controlling the simulation. This includes a pause, play, next
step, and previous step button.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
The simulation can be controlled manually using on a graphical user interface.

23

4.2. GUI for moving trams

Priority:
USEFUL

Goal:
Have a user interface for controlling trams individually.

Precondition:
The system contains a virtual subway network with the different stations and data
on all trams.

Postcondition:
Trams can be controlled manually using on a graphical user interface.

Steps:
1. Choose a tram in the Ul
2. Have the option to make the tram wait in, or immediately leave, the current station

24

4.3 GUI for statistical data

Priority:
USEFUL

Goal:
Visualization of the statistical data collected in luse case 3.7

Precondition:
The system has collected the statistical data.

Postcondition:
The statistical data is displayed in a graph using a graphical user interface.

Extension:

Use case 3.7

25

Appendix A - Input format

The input format for the virtual subway network has been chosen in such a way that
new attributes and elements can easily be added.

SubwaySystem = { Element }

Element = "<" ElementType ">" AttributelList "</" ElementType ">"
ElementType = "STATION" | "TRAM" | "TRACK"

AttributeList = Attribute { Attribute }

Attribute = "<" AttributeType ">" AttributeValue "</" AttributeType ">"
AttributeType = "name" | "previous" | "next" | "track" | "line" | "type"
| "vehicle" | "startStation"

AttributeValue = Primitive

Primitive = Integer | String

Integer = Digit { Digit 7}

Digit = "O" ... "g"
String = Character { Character }
Character = "a" ... "z" | "A" ... "Z"

Note that the AttributeList has a relatively free format which will strongly depend
on the type of element defined. The following table shows the possible attributes for
each element:

ElementType | Attribute

STATION name, previous, next, track, type
TRAM line, startStation, type, vehicle
TRACK previous, next, track

In addition, depending on the AttributeType, only one specific AttributeValue is
allowed:

AttributeType AttributeValue
name, previous, next, startStation, type | String
track, line, vehicle Integer

In addition, the opening tag must always correspond to the closing tag. This is why
it is necessary to check whether or not the input is valid during parsing.

26

The inputfile containing the subway network is written by hand. In order to simulate
the subway system, the information must be consistent.

The subway system is consistent if:
e cach station has at least one track

each track is connected to a previous station and to a next station that contains
the same track

each tram has a line that corresponds to a track in its starting station

the starting station of a tram is a valid station in the subway network

each track occurs at most once in every station

27

Appendix B - Tram data

The following table provides an overview of the data for each tram type.

PCC | Albatross
Capacity 16 72
Speed 40 70
Stops at | stations, stops stations

Appendix C - Advanced time simulation

The time (in seconds) required for a tram to move from one station to the next can
be calculated using the following formula:

+ — 3600 % distance
speed

However, since the tram won’t always be travelling at its maximum speed, using this
formula would result in unrealistically fast trams. We will therefore approximate
a more realistic travelling time by doubling the result of the formula. Moreover,
we can estimate that the distance between subway stations in Las Vegas is about 1
kilometer. This results in

t=2x% (3600 *)
speed

or
7200

t
speed

For the time required to stand at a station, letting passengers on and off, we will use
a constant of 60 seconds. Note that the Albatross trams will not take in passengers
when the current station is an above-ground stop. In this case, the tram will leave
after 1 second.

28

	Summary
	Context
	Legend
	Overzicht

